IEEE 802.16

Last updated

IEEE 802.16

IEEE 802.16 is a series of wireless broadband standards written by the Institute of Electrical and Electronics Engineers (IEEE). The IEEE Standards Board established a working group in 1999 to develop standards for broadband for wireless metropolitan area networks. The Workgroup is a unit of the IEEE 802 local area network and metropolitan area network standards committee.

Contents

Although the 802.16 family of standards is officially called WirelessMAN in IEEE, it has been commercialized under the name "WiMAX" (from "Worldwide Interoperability for Microwave Access") by the WiMAX Forum industry alliance. The Forum promotes and certifies compatibility and interoperability of products based on the IEEE 802.16 standards.

The 802.16e-2005 amendment was implemented and deployed around the world as of 2009. [1] The version IEEE 802.16-2009 was amended by IEEE 802.16j-2009.

Standards

Projects publish draft and proposed standards with the letter "P" prefixed. Once a standard is ratified and published, that "P" gets dropped and replaced by a trailing dash and suffix year of publication.

Projects

StandardDescriptionStatus
802.16Fixed Broadband Wireless Access (10–66 GHz)Superseded
802.16.2Recommended practice for coexistenceSuperseded
802.16cSystem profiles for 10–66 GHzSuperseded
802.16aPhysical layer and MAC definitions for 2–10 GHzSuperseded
P802.16bLicense-exempt frequencies
(Project withdrawn)
Withdrawn
P802.16dMaintenance and System profiles for 2–11 GHz
(Project merged into 802.16-2004)
Merged
802.16Air Interface for Fixed Broadband Wireless Access System
(rollup of 802.16–2001, 802.16a, 802.16c and P802.16d)
Superseded
P802.16.2aCoexistence with 2–11 GHz and 23.5–43.5 GHz
(Project merged into 802.16.2-2004)
Merged
802.16.2IEEE Recommended Practice for Local and metropolitan area networks
Coexistence of Fixed Broadband Wireless Access Systems
(Maintenance and rollup of 802.16.2–2001 and P802.16.2a)
Released on 2004-March-17.
Existing
802.16f Management Information Base (MIB) for 802.16-2004Superseded
802.16-2004/Cor 1–2005Corrections for fixed operations
(co-published with 802.16e-2005)
Superseded
802.16eMobile Broadband Wireless Access SystemSuperseded
802.16kIEEE Standard for Local and Metropolitan Area Networks: Media Access Control (MAC) Bridges
Amendment 2: Bridging of IEEE 802.16
(An amendment to IEEE 802.1D)
Released on 2007-August-14.
Existing
802.16gManagement Plane Procedures and ServicesSuperseded
P802.16iMobile Management Information Base
(Project merged into 802.16-2009)
Merged
802.16-2009Air Interface for Fixed and Mobile Broadband Wireless Access System
(rollup of 802.16–2004, 802.16-2004/Cor 1, 802.16e, 802.16f, 802.16g and P802.16i)
Superseded
802.16j Multihop relaySuperseded
802.16hImproved Coexistence Mechanisms for License-Exempt OperationSuperseded
802.16mAdvanced Air Interface with data rates of 100 Mbit/s mobile and 1 Gbit/s fixed.
Also known as Mobile WiMAX Release 2 or WirelessMAN-Advanced.
Aiming at fulfilling the ITU-R IMT-Advanced requirements on 4G systems.
Superseded [2]
802.16-2012IEEE Standard for Air Interface for Broadband Wireless Access Systems
It is a rollup of 802.16h, 802.16j and Std 802.16m
(but excluding the WirelessMAN-Advanced radio interface, which was moved to IEEE Std 802.16.1).
Released on 2012-August-17.
Superseded
802.16.1IEEE Standard for WirelessMAN-Advanced Air Interface for Broadband Wireless Access Systems
Released on 2012-September-07.
Existing
802.16pIEEE Standard for Air Interface for Broadband Wireless Access Systems
Amendment 1: Enhancements to Support Machine-to-Machine Applications
Released on 2012-October-08.
Existing
802.16.1bIEEE Standard for WirelessMAN-Advanced Air Interface for Broadband Wireless Access Systems
Amendment 1: Enhancements to Support Machine-to-Machine Applications
Released on 2012-October-10.
Existing
802.16nIEEE Standard for Air Interface for Broadband Wireless Access Systems
Amendment 2: Higher Reliability Networks
Approved on 2013-March-06.
Existing
802.16.1aIEEE Standard for WirelessMAN-Advanced Air Interface for Broadband Wireless Access Systems
Amendment 2: Higher Reliability Networks
Approved on 2013-March-06.
Existing
802.16-2017IEEE Standard for Air Interface for Broadband Wireless Access Systems
It is a rollup of 802.16p, 802.16n, 802.16q and Std 802.16s
Released on 2017-September.
Existing
802 16-Schema synoptique realise avec Inkscape.png

802.16e-2005 Technology

The 802.16 standard essentially standardizes two aspects of the air interface – the physical layer (PHY) and the media access control (MAC) layer. This section provides an overview of the technology employed in these two layers in the mobile 802.16e specification.

PHY

802.16e uses scalable OFDMA to carry data, supporting channel bandwidths of between 1.25 MHz and 20 MHz, with up to 2048 subcarriers. It supports adaptive modulation and coding, so that in conditions of good signal, a highly efficient 64 QAM coding scheme is used, whereas when the signal is poorer, a more robust BPSK coding mechanism is used. In intermediate conditions, 16 QAM and QPSK can also be employed. Other PHY features include support for multiple-input multiple-output (MIMO) antennas in order to provide good non-line-of-sight propagation (NLOS) characteristics (or higher bandwidth) and hybrid automatic repeat request (HARQ) for good error correction performance.

Although the standards allow operation in any band from 2 to 66 GHz, mobile operation is best in the lower bands which are also the most crowded, and therefore most expensive. [3]

MAC

The 802.16 MAC describes a number of Convergence Sublayers which describe how wireline technologies such as Ethernet, Asynchronous Transfer Mode (ATM) and Internet Protocol (IP) are encapsulated on the air interface, and how data is classified, etc. It also describes how secure communications are delivered, by using secure key exchange during authentication, and encryption using Advanced Encryption Standard (AES) or Data Encryption Standard (DES) during data transfer. Further features of the MAC layer include power saving mechanisms (using sleep mode and idle mode) and handover mechanisms.

A key feature of 802.16 is that it is a connection-oriented technology. The subscriber station (SS) cannot transmit data until it has been allocated a channel by the base station (BS). This allows 802.16e to provide strong support for quality of service (QoS).

QoS

Quality of service (QoS) in 802.16e is supported by allocating each connection between the SS and the BS (called a service flow in 802.16 terminology) to a specific QoS class. In 802.16e, there are 5 QoS classes:

802.16e-2005 QoS classes
ServiceAbbrevDefinitionTypical Applications
Unsolicited Grant ServiceUGSReal-time data streams comprising fixed-size data packets issued at periodic intervalsT1/E1 transport
Extended Real-time Polling ServiceertPSReal-time service flows that generate variable-sized data packets on a periodic basisVoIP
Real-time Polling ServicertPSReal-time data streams comprising variable-sized data packets that are issued at periodic intervalsMPEG Video
Non-real-time Polling ServicenrtPSDelay-tolerant data streams comprising variable-sized data packets for which a minimum data rate is requiredFTP with guaranteed minimum throughput[ citation needed ]
Best EffortBEData streams for which no minimum service level is required and therefore may be handled on a space-available basisHTTP

The BS and the SS use a service flow with an appropriate QoS class (plus other parameters, such as bandwidth and delay) to ensure that application data receives QoS treatment appropriate to the application.

Certification

Because the IEEE only sets specifications but does not test equipment for compliance with them, the WiMAX Forum runs a certification program wherein members pay for certification. WiMAX certification by this group is intended to guarantee compliance with the standard and interoperability with equipment from other manufacturers. The mission of the Forum is to promote and certify compatibility and interoperability of broadband wireless products.

See also

Related Research Articles

IEEE 802.15 is a working group of the Institute of Electrical and Electronics Engineers (IEEE) IEEE 802 standards committee which specifies Wireless Specialty Networks (WSN) standards. The working group was formerly known as Working Group for Wireless Personal Area Networks.

IEEE 802.11e-2005 or 802.11e is an approved amendment to the IEEE 802.11 standard that defines a set of quality of service (QoS) enhancements for wireless LAN applications through modifications to the media access control (MAC) layer. The standard is considered of critical importance for delay-sensitive applications, such as Voice over Wireless LAN and streaming multimedia. The amendment has been incorporated into the published IEEE 802.11-2007 standard.

<span class="mw-page-title-main">IEEE 802.20</span>

IEEE 802.20 or Mobile Broadband Wireless Access (MBWA) was a specification by the standard association of the Institute of Electrical and Electronics Engineers (IEEE) for mobile broadband networks. The main standard was published in 2008. MBWA is no longer being actively developed.

<span class="mw-page-title-main">WiMAX</span> Wireless broadband standard

Worldwide Interoperability for Microwave Access (WiMAX) is a family of wireless broadband communication standards based on the IEEE 802.16 set of standards, which provide physical layer (PHY) and media access control (MAC) options.

4G is the fourth generation of broadband cellular network technology, succeeding 3G and preceding 5G. A 4G system must provide capabilities defined by ITU in IMT Advanced. Potential and current applications include amended mobile web access, IP telephony, gaming services, high-definition mobile TV, video conferencing, and 3D television.

HomePlug is the family name for various power line communications specifications under the HomePlug designation, each with unique capabilities and compatibility with other HomePlug specifications.

IEEE 802.22, is a standard for wireless regional area network (WRAN) using white spaces in the television (TV) frequency spectrum. The development of the IEEE 802.22 WRAN standard is aimed at using cognitive radio (CR) techniques to allow sharing of geographically unused spectrum allocated to the television broadcast service, on a non-interfering basis, to bring broadband access to hard-to-reach, low population density areas, typical of rural environments, and is therefore timely and has the potential for a wide applicability worldwide. It is the first worldwide effort to define a standardized air interface based on CR techniques for the opportunistic use of TV bands on a non-interfering basis.

<span class="mw-page-title-main">HomeRF</span> Wireless networking specification

HomeRF was a wireless networking specification for home devices. It was developed in 1998 by the Home Radio Frequency Working Group, a consortium of mobile wireless companies that included Proxim Wireless, Intel, Siemens AG, Motorola, Philips and more than 100 other companies.

IEEE 802.11n-2009 or 802.11n is a wireless-networking standard that uses multiple antennas to increase data rates. The Wi-Fi Alliance has also retroactively labelled the technology for the standard as Wi-Fi 4. It standardized support for multiple-input multiple-output, frame aggregation, and security improvements, among other features, and can be used in the 2.4 GHz or 5 GHz frequency bands.

The IEEE Std 1901-2010 is a standard for high speed communication devices via electric power lines, often called broadband over power lines (BPL). The standard uses transmission frequencies below 100 MHz. This standard is usable by all classes of BPL devices, including BPL devices used for the connection to Internet access services as well as BPL devices used within buildings for local area networks, smart energy applications, transportation platforms (vehicle), and other data distribution applications.

IEEE 802.11a-1999 or 802.11a was an amendment to the IEEE 802.11 wireless local network specifications that defined requirements for an orthogonal frequency-division multiplexing (OFDM) communication system. It was originally designed to support wireless communication in the unlicensed national information infrastructure (U-NII) bands as regulated in the United States by the Code of Federal Regulations, Title 47, Section 15.407.

IEEE 802.11g-2003 or 802.11g is an amendment to the IEEE 802.11 specification that operates in the 2.4 GHz microwave band. The standard has extended throughput to up to 54 Mbit/s using the same 20 MHz bandwidth as 802.11b uses to achieve 11 Mbit/s. This specification under the marketing name of Wi-Fi has been implemented all over the world. The 802.11g protocol is now Clause 19 of the published IEEE 802.11-2007 standard, and Clause 19 of the published IEEE 802.11-2012 standard.

G.hn is a specification for home networking with data rates up to 2 Gbit/s and operation over four types of legacy wires: telephone wiring, coaxial cables, power lines and plastic optical fiber. A single G.hn semiconductor device is able to network over any of the supported home wire types. Some benefits of a multi-wire standard are lower equipment development costs and lower deployment costs for service providers.

International Mobile Telecommunications-Advanced are the requirements issued by the ITU Radiocommunication Sector (ITU-R) of the International Telecommunication Union (ITU) in 2008 for what is marketed as 4G mobile phone and Internet access service.

IEEE 802.11ac-2013 or 802.11ac is a wireless networking standard in the IEEE 802.11 set of protocols, providing high-throughput wireless local area networks (WLANs) on the 5 GHz band. The standard has been retroactively labelled as Wi-Fi 5 by Wi-Fi Alliance.

IEEE 802.11ah is a wireless networking protocol published in 2017 called Wi-Fi HaLow as an amendment of the IEEE 802.11-2007 wireless networking standard. It uses 900 MHz license-exempt bands to provide extended-range Wi-Fi networks, compared to conventional Wi-Fi networks operating in the 2.4 GHz and 5 GHz bands. It also benefits from lower energy consumption, allowing the creation of large groups of stations or sensors that cooperate to share signals, supporting the concept of the Internet of things (IoT). The protocol's low power consumption competes with Bluetooth, LoRa, and Zigbee, and has the added benefit of higher data rates and wider coverage range.

Multiple-input, multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) is the dominant air interface for 4G and 5G broadband wireless communications. It combines multiple-input, multiple-output (MIMO) technology, which multiplies capacity by transmitting different signals over multiple antennas, and orthogonal frequency-division multiplexing (OFDM), which divides a radio channel into a large number of closely spaced subchannels to provide more reliable communications at high speeds. Research conducted during the mid-1990s showed that while MIMO can be used with other popular air interfaces such as time-division multiple access (TDMA) and code-division multiple access (CDMA), the combination of MIMO and OFDM is most practical at higher data rates.

IEEE 802.11ax, officially marketed by the Wi-Fi Alliance as Wi-Fi 6 and Wi-Fi 6E (6 GHz), is an IEEE standard for wireless local-area networks (WLANs) and the successor of 802.11ac. It is also known as High EfficiencyWi-Fi, for the overall improvements to Wi-Fi 6 clients in dense environments. It is designed to operate in license-exempt bands between 1 and 7.125 GHz, including the 2.4 and 5 GHz bands already in common use as well as the much wider 6 GHz band.

IEEE 802.11ay, Enhanced Throughput for Operation in License-exempt Bands above 45 GHz, is a follow-up to IEEE 802.11ad WiGig standard which quadruples the bandwidth and adds MIMO up to 8 streams. Development started in 2015 and the final standard IEEE 802.11ay-2021 was approved in March 2021.

IEEE 802.11be is the next amendment of the IEEE 802.11 standard, which will be designated Wi-Fi 7. It will build upon 802.11ax, focusing on WLAN indoor and outdoor operation with stationary and pedestrian speeds in the 2.4, 5, and 6 GHz frequency bands. Speeds are expected to reach a theoretical maximum of 30 Gbit/s.

References

  1. "WiMAX™ operators and vendors from around the world announce new deployments, growing commitments at the 2nd Annual WiMAX Forum® Global Congress". News release. WiMAX Forum. June 4, 2009. Archived from the original on July 17, 2011. Retrieved August 20, 2011.
  2. "IEEE Approves IEEE 802.16m – Advanced Mobile Broadband Wireless Standard". News release. IEEE Standards Association. March 31, 2011. Retrieved August 20, 2011.
  3. Michael Richardson; Patrick Ryan (March 19, 2006). "WiMAX: Opportunity or Hype?". Advances in Telecom: Proceedings of the Fourth Annual ITERA Conference. SSRN   892260.