Voice over NR

Last updated

Voice over New Radio or Voice over 5G (acronym VoNR or Vo5G) is a high-speed wireless communication standard for voice services over 5G networks, utilizing mobile phones, data terminals, IoT devices, and wearables. [1] Like 4G networks, 5G do not natively support voice calls traditionally carried over circuit-switched technology. [2] Instead, voice communication is transmitted over the IP network, similar to IPTV services. To address this, Voice over NR (VoNR) is implemented, allowing voice calls to be carried over the 5G network using the same packet-switched infrastructure as other IP-based services, such as video streaming and messaging. [3]

Contents

Similar to how VoLTE enables voice calls on 4G networks, VoNR (Vo5G) serves as the 5G equivalent for voice communication, but it requires a 5G standalone (SA) network to function. [4] VoNR offers better voice quality than its 4G predecessor, primarily due to the inherent lower latency of 5G NR, allowing for faster call setup and improved overall communication. [5] Additionally, VoNR removes the LTE anchor, enabling the voice call to stay entirely within the 5G network. [6]

VoNR (Vo5G) calls are generally charged at the same rate as other calls, and to make a VoNR call, the device, its firmware, and the mobile telephone provider must all support the service and work together in the specific area.

See also

Related Research Articles

Telephony is the field of technology involving the development, application, and deployment of telecommunications services for the purpose of electronic transmission of voice, fax, or data, between distant parties. The history of telephony is intimately linked to the invention and development of the telephone.

Voice over Internet Protocol (VoIP), also known as IP telephony, refers to a set of technologies used for voice communication sessions over Internet Protocol (IP) networks, such as the Internet. VoIP enables voice calls to be transmitted as data packets, facilitating various methods of voice communication, including traditional applications like Skype, Microsoft Teams, Google Voice, and VoIP phones. Regular telephones can also be used for VoIP by connecting them to the Internet via analog telephone adapters (ATAs), which convert traditional telephone signals into digital data packets that can be transmitted over IP networks.

<span class="mw-page-title-main">3G</span> Third generation of wireless mobile telecommunications technology

3G is the third generation of cellular network technology, representing a significant advancement over 2G, particularly in terms of data transfer speeds and mobile internet capabilities. While 2G networks, including technologies such as GPRS and EDGE, supported limited data services, 3G introduced significantly higher-speed mobile internet, improved voice quality, and enhanced multimedia capabilities. Although 3G enabled faster data speeds compared to 2G, it provided moderate internet speeds suitable for general browsing and multimedia content, but not for high-definition or data-intensive applications. Based on the International Mobile Telecommunications-2000 (IMT-2000) specifications established by the International Telecommunication Union (ITU), 3G supports a range of services, including voice telephony, mobile internet access, video calls, video streaming, and mobile TV.

Verizon is an American wireless network operator that previously operated as a separate division of Verizon Communications under the name Verizon Wireless. In a 2019 reorganization, Verizon moved the wireless products and services into the divisions Verizon Consumer and Verizon Business, and stopped using the Verizon Wireless name. Verizon has 114.2 million subscribers as of September 30, 2024. It currently has the largest network in the United States with their LTE network covering 70% of the United States.

4G is the fourth generation of cellular network technology, succeeding 3G and designed to support all-IP communications and broadband services, enabling a variety of data-intensive applications. A 4G system must meet the performance requirements defined by the International Telecommunication Union (ITU) in IMT Advanced. 4G supports a range of applications, including enhanced mobile internet access, high-definition streaming, IP telephony, video conferencing, and the expansion of Internet of Things (IoT) applications.

The IP Multimedia Subsystem or IP Multimedia Core Network Subsystem (IMS) is a standardised architectural framework for delivering IP multimedia services. Historically, mobile phones have provided voice call services over a circuit-switched-style network, rather than strictly over an IP packet-switched network. Various voice over IP technologies are available on smartphones; IMS provides a standard protocol across vendors.

<span class="mw-page-title-main">Wi-Fi calling</span> Protocol that extends mobile voice, data and multimedia applications over IP networks

Wi-Fi calling, also called VoWiFi, refers to mobile phone voice calls and data that are made over IP networks using Wi-Fi, instead of the cell towers provided by cellular networks. Using this feature, compatible handsets are able to route regular cellular calls through a wireless LAN (Wi-Fi) network with broadband Internet, while seamlessly change connections between the two where necessary. This feature makes use of the Generic Access Network (GAN) protocol, also known as Unlicensed Mobile Access (UMA).

Mobile VoIP or simply mVoIP is an extension of mobility to a voice over IP network. Two types of communication are generally supported: cordless telephones using DECT or PCS protocols for short range or campus communications where all base stations are linked into the same LAN, and wider area communications using 3G or 4G protocols.

<span class="mw-page-title-main">Mobile broadband</span> Marketing term

Mobile broadband is the marketing term for wireless Internet access via mobile (cell) networks. Access to the network can be made through a portable modem, wireless modem, or a tablet/smartphone or other mobile device. The first wireless Internet access became available in 1991 as part of the second generation (2G) of mobile phone technology. Higher speeds became available in 2001 and 2006 as part of the third (3G) and fourth (4G) generations. In 2011, 90% of the world's population lived in areas with 2G coverage, while 45% lived in areas with 2G and 3G coverage. Mobile broadband uses the spectrum of 225 MHz to 3700 MHz.

The Global mobile Suppliers Association (GSA) is a not-for-profit industry organisation representing suppliers in the mobile communication industry. GSA actively promotes 3GPP technology such as 3G; 4G; 5G. GSA is a market representation partner in 3GPP and co-operates with organisations including COAI, ETSI, GSMA, ICU, ITU, European Conference of Postal and Telecommunications Administrations (CEPT-ECC), other regional regulatory bodies and other industry associations.

<span class="mw-page-title-main">LTE Advanced</span> Mobile communication standard

LTE Advanced is a mobile communication standard and a major enhancement of the Long Term Evolution (LTE) standard. It was formally submitted as a candidate 4G to ITU-T in late 2009 as meeting the requirements of the IMT-Advanced standard, and was standardized by the 3rd Generation Partnership Project (3GPP) in March 2011 as 3GPP Release 10.

In telecommunications, long-term evolution (LTE) is a standard for wireless broadband communication for mobile devices and data terminals, based on the GSM/EDGE and UMTS/HSPA standards. It improves on those standards' capacity and speed by using a different radio interface and core network improvements. LTE is the upgrade path for carriers with both GSM/UMTS networks and CDMA2000 networks. Because LTE frequencies and bands differ from country to country, only multi-band phones can use LTE in all countries where it is supported.

International Mobile Telecommunications-Advanced are the requirements issued by the ITU Radiocommunication Sector (ITU-R) of the International Telecommunication Union (ITU) in 2008 for what is marketed as 4G mobile phone and Internet access service.

<span class="mw-page-title-main">5G</span> Broadband cellular network standard

In telecommunications, 5G is the fifth generation of cellular network technology, which mobile operators began deploying worldwide in 2019 as the successor to 4G. 5G is based on standards defined by the International Telecommunication Union (ITU) under the IMT-2020 requirements, which outline performance targets for speed, latency, and connectivity to support advanced use cases.

<span class="mw-page-title-main">Mobile broadband modem</span> Modem providing Internet access via a wireless connection

A mobile broadband modem, also known as wireless modem or cellular modem, is a type of modem that allows a personal computer or a router to receive wireless Internet access via a mobile broadband connection instead of using telephone or cable television lines. A mobile Internet user can connect using a wireless modem to a wireless Internet Service Provider (ISP) to get Internet access.

<span class="mw-page-title-main">YTL Communications</span> Malaysian telecommunications company

YTL Communications or YTL Communications Sdn. Bhd.dbaYes is a mobile network operator in Malaysia, the fifth in the country overall. Headquartered in Kuala Lumpur, Malaysia, YTL Communications is a subsidiary of the utilities company YTL Power International Berhad and serves as the communications arm of YTL Corporation Berhad, a leading infrastructure conglomerate in Malaysia. Yes uses the native dialling prefix identifier of 018 and 011-1.

<span class="mw-page-title-main">Voice over LTE</span> High-speed wireless communication functionality

Voice over Long-Term Evolution is an LTE high-speed wireless communication standard for voice calls and SMS using mobile phones and data terminals. VoLTE has up to three times more voice and data capacity than older 3G UMTS and up to six times more than 2G GSM. It uses less bandwidth because VoLTE's packet headers are smaller than those of unoptimized VoIP/LTE. VoLTE calls are usually charged at the same rate as other calls.

5G NR is a radio access technology (RAT) developed by the 3rd Generation Partnership Project (3GPP) for the 5G mobile network. It was designed to be the global standard for the air interface of 5G networks. It is based on orthogonal frequency-division multiplexing (OFDM), as is the 4G long-term evolution (LTE) standard.

References

  1. Janevski, Toni (2024-04-23). Future Fixed and Mobile Broadband Internet, Clouds, and IoT/AI. John Wiley & Sons. ISBN   978-1-394-18796-6.
  2. "Communication services (VoLTE/VoNR)". www.3gpp.org. Retrieved 2024-11-30.
  3. "Communication services (VoLTE/VoNR)". www.3gpp.org. Retrieved 2024-11-30.
  4. "What Is 5G VoNR | Unveiling the Future of Wireless Communication". www.voicenter.com. Retrieved 2024-11-30.
  5. VoLTE Vs Vo5G - Difference between VoLTE and VoNR , retrieved 2022-08-26
  6. Rudra, Nishit Raghuwanshi (2022-10-13). "What is Vo5G or VoNR and how it will work?". Smartprix. Retrieved 2024-11-30.