Channel access method

Last updated

In telecommunications and computer networks, a channel access method or multiple access method allows more than two terminals connected to the same transmission medium to transmit over it and to share its capacity. [1] Examples of shared physical media are wireless networks, bus networks, ring networks and point-to-point links operating in half-duplex mode.

Contents

A channel access method is based on multiplexing, which allows several data streams or signals to share the same communication channel or transmission medium. In this context, multiplexing is provided by the physical layer.

A channel access method may also be a part of the multiple access protocol and control mechanism, also known as medium access control (MAC). Medium access control deals with issues such as addressing, assigning multiplex channels to different users and avoiding collisions. Media access control is a sub-layer in the data link layer of the OSI model and a component of the link layer of the TCP/IP model.

Fundamental schemes

Several ways of categorizing multiple-access schemes and protocols have been used in the literature. For example, Daniel Minoli (2009) [2] identifies five principal types of multiple-access schemes: FDMA, TDMA, CDMA, SDMA, and random access. R. Rom and M. Sidi (1990) [3] categorize the protocols into Conflict-free access protocols, Aloha protocols, and Carrier Sensing protocols.

The Telecommunications Handbook (Terplan and Morreale, 2000) [4] identifies the following MAC categories:

Channel access schemes generally fall into the following categories. [1] [5] [6]

Frequency-division multiple access

The frequency-division multiple access (FDMA) channel-access scheme is the most standard analog system, based on the frequency-division multiplexing (FDM) scheme, which provides different frequency bands to different data streams. In the FDMA case, the frequency bands are allocated to different nodes or devices. An example of FDMA systems were the first-generation 1G cell-phone systems, where each phone call was assigned to a specific uplink frequency channel, and another downlink frequency channel. Each message signal (each phone call) is modulated on a specific carrier frequency.

A related technique is wavelength division multiple access (WDMA), based on wavelength-division multiplexing (WDM), where different data streams get different colors in fiber-optical communications. In the WDMA case, different network nodes in a bus or hub network get a different color. [7]

An advanced form of FDMA is the orthogonal frequency-division multiple access (OFDMA) scheme, for example, used in 4G cellular communication systems. In OFDMA, each node may use several sub-carriers, making it possible to provide different quality of service (different data rates) to different users. The assignment of sub-carriers to users may be changed dynamically, based on the current radio channel conditions and traffic load. Single-carrier FDMA (SC-FDMA), a.k.a. linearly-precoded OFDMA (LP-OFDMA), is based on single-carrier frequency-domain-equalization (SC-FDE).

Time-division multiple access

The time-division multiple access (TDMA) channel access scheme is based on the time-division multiplexing (TDM) scheme. TDMA provides different time slots to different transmitters in a cyclically repetitive frame structure. For example, node 1 may use time slot 1, node 2 time slot 2, etc. until the last transmitter when it starts over. An advanced form is dynamic TDMA (DTDMA), where an assignment of transmitters to time slots varies on each frame.

Multi-frequency time-division multiple access (MF-TDMA) combines time and frequency multiple access. As an example, 2G cellular systems are based on a combination of TDMA and FDMA. Each frequency channel is divided into eight time slots, of which seven are used for seven phone calls, and one for signaling data.

Statistical time-division multiplexing multiple access is typically also based on time-domain multiplexing, but not in a cyclically repetitive frame structure. Due to its random character, it can be categorized as statistical multiplexing methods and capable of dynamic bandwidth allocation. This requires a media access control (MAC) protocol, i.e. a principle for the nodes to take turns on the channel and to avoid collisions. Common examples are CSMA/CD, used in Ethernet bus networks and hub networks, and CSMA/CA, used in wireless networks such as IEEE 802.11.

Code-division multiple access and spread spectrum multiple access

The code-division multiple access (CDMA) scheme is based on spread spectrum, meaning that a wider radio channel bandwidth is used than the data rate of individual bit streams requires, and several message signals are transferred simultaneously over the same carrier frequency, utilizing different spreading codes. Per the Shannon–Hartley theorem, the wide bandwidth makes it possible to send with a signal-to-noise ratio of much less than 1 (less than 0 dB), meaning that the transmission power can be reduced to a level below the level of the noise and co-channel interference from other message signals sharing the same frequency range.

One form is direct-sequence CDMA (DS-CDMA), based on direct-sequence spread spectrum (DSSS), used for example in 3G cell phone systems. Each information bit (or each symbol) is represented by a long code sequence of several pulses, called chips. The sequence is the spreading code, and each message signal (for example each phone call) uses a different spreading code.

Another form is frequency-hopping CDMA (FH-CDMA), based on frequency-hopping spread spectrum (FHSS), where the channel frequency is changed rapidly according to a sequence that constitutes the spreading code. As an example, the Bluetooth communication system is based on a combination of frequency-hopping and either CSMA/CA statistical time-division multiplexing communication (for data communication applications) or TDMA (for audio transmission). All nodes belonging to the same user (to the same piconet) use the same frequency hopping sequence synchronously, meaning that they send on the same frequency channel, but CDMA/CA or TDMA is used to avoid collisions within the virtual personal area network (VPAN). Frequency-hopping is used by Bluetooth to reduce the cross-talk and collision probability between nodes in different VPANs.

Other techniques include OFDMA and multi-carrier code-division multiple access (MC-CDMA).

Space-division multiple access

Space-division multiple access (SDMA) transmits different information in different physical areas. Examples include simple cellular radio systems and more advanced cellular systems that use directional antennas and power modulation to refine spatial transmission patterns.

Power-division multiple access

Power-division multiple access (PDMA) scheme is based on using variable transmission power between users in order to share the available power on the channel. Examples include multiple SCPC modems on a satellite transponder, where users get on demand a larger share of the power budget to transmit at higher data rates. [8]

Packet mode methods

Packet mode channel access methods select a single network transmitter for the duration of a packet transmission. Some methods are more suited to wired communication while others are more suited to wireless. [1]

Common statistical time-division multiplexing multiple access protocols for wired multi-drop networks include:

Common multiple access protocols that may be used in packet radio wireless networks include:

Duplexing methods

Where these methods are used for dividing forward and reverse communication channels, they are known as duplexing methods. A duplexing communication system can be either half-duplex or full duplex. In a half-duplex system, communication only works in one direction at a time. A walkie-talkie is an example of a half-duplex system because both users can communicate with one another, but not at the same time, someone has to finish transmitting before the next person can begin. In a full-duplex system, both users can communicate at the same time. A telephone is the most common example of a full-duplex system because both users can speak and be heard at the same time on each end. Some types of full-duplexing methods are:

Hybrid application examples

Note that hybrids of these techniques are frequently used. Some examples:

Application-specific definitions

Different channel access constraints and schemes apply to different applications.

Local and metropolitan area networks

In local area networks (LANs) and metropolitan area networks (MANs), multiple access methods enable bus networks, ring networks, star networks, wireless networks and half-duplex point-to-point communication, but are not required in full-duplex point-to-point serial lines between network switches and routers. The most common multiple access method is CSMA/CD, which is used in Ethernet. Although today's Ethernet installations use full-duplex connections directly to switches. CSMA/CD is still implemented to achieve compatibility with older repeater hubs.

Satellite communications

In satellite communications, multiple access is the capability of a communications satellite to function as a portion of a communications link between more than one pair of ground-based terminals concurrently. Three types of multiple access presently used with communications satellites are code-division, frequency-division, and time-division multiple access.

Cellular networks

In cellular networks the two most widely adopted technologies are CDMA and TDMA. TDMA technology works by identifying natural breaks in speech and utilizing one radio wave to support multiple transmissions in turn. In CDMA technology, each individual packet receives a unique code that is broken up over a wide frequency spectrum and is then reassembled on the other end. CDMA allows multiple people to speak at the same time over the same frequency, allowing more conversations to be transmitted over the same amount of spectrum; this is one reason why CDMA eventually became the most widely adopted channel access method in the wireless industry. [9]

The origins of CDMA can be traced back to the 1940s where it was patented by the United States government and used throughout World War II to transmit messages. However, following the war the patent expired and the use of CDMA diminished and was widely replaced by TDMA. [9] That was until Irwin M. Jacobs an MIT engineer, and fellow employees from the company Linkabit founded the telecommunications company Qualcomm. [10] At the time Qualcomm was founded, Jacobs had already been working on addressing telecommunications problems for the military using digital technology to increase the capacity of spectrum. [11] Qualcomm knew that CDMA would greatly increase the efficiency and availability of wireless, but the wireless industry having already invested millions of dollars into TDMA was skeptical. [11] Jacobs and Qualcomm spent several years improving infrastructure and performing tests and demonstrations of CDMA. In 1993, CDMA became accepted as the wireless industry standard. By 1995, CDMA was being used commercially in the wireless industry as the foundation of 2G. [9]

See also

Related Research Articles

<span class="mw-page-title-main">Code-division multiple access</span> Channel access method used by various radio communication technologies

Code-division multiple access (CDMA) is a channel access method used by various radio communication technologies. CDMA is an example of multiple access, where several transmitters can send information simultaneously over a single communication channel. This allows several users to share a band of frequencies. To permit this without undue interference between the users, CDMA employs spread spectrum technology and a special coding scheme.

<span class="mw-page-title-main">Time-division multiple access</span> Channel access method for networks using a shared communications medium

Time-division multiple access (TDMA) is a channel access method for shared-medium networks. It allows several users to share the same frequency channel by dividing the signal into different time slots. The users transmit in rapid succession, one after the other, each using its own time slot. This allows multiple stations to share the same transmission medium while using only a part of its channel capacity. Dynamic TDMA is a TDMA variant that dynamically reserves a variable number of time slots in each frame to variable bit-rate data streams, based on the traffic demand of each data stream.

The Universal Mobile Telecommunications System (UMTS) is a 3G mobile cellular system for networks based on the GSM standard. Developed and maintained by the 3GPP, UMTS is a component of the International Telecommunication Union IMT-2000 standard set and compares with the CDMA2000 standard set for networks based on the competing cdmaOne technology. UMTS uses wideband code-division multiple access (W-CDMA) radio access technology to offer greater spectral efficiency and bandwidth to mobile network operators.

<span class="mw-page-title-main">Multiplexing</span> Method of combining multiple signals into one signal over a shared medium

In telecommunications and computer networking, multiplexing is a method by which multiple analog or digital signals are combined into one signal over a shared medium. The aim is to share a scarce resource – a physical transmission medium. For example, in telecommunications, several telephone calls may be carried using one wire. Multiplexing originated in telegraphy in the 1870s, and is now widely applied in communications. In telephony, George Owen Squier is credited with the development of telephone carrier multiplexing in 1910.

Frequency-division multiple access (FDMA) is a channel access method used in some multiple-access protocols. FDMA allows multiple users to send data through a single communication channel, such as a coaxial cable or microwave beam, by dividing the bandwidth of the channel into separate non-overlapping frequency sub-channels and allocating each sub-channel to a separate user. Users can send data through a subchannel by modulating it on a carrier wave at the subchannel's frequency. It is used in satellite communication systems and telephone trunklines.

<span class="mw-page-title-main">Point-to-multipoint communication</span> Communications method involving a one-to-many connection

In telecommunications, point-to-multipoint communication is communication which is accomplished via a distinct type of one-to-many connection, providing multiple paths from a single location to multiple locations.

IS-54 and IS-136 are second-generation (2G) mobile phone systems, known as Digital AMPS (D-AMPS), and most often referred to as TDMA, are a further development of the North American 1G mobile system Advanced Mobile Phone System (AMPS). It was once prevalent throughout the Americas, particularly in the United States and Canada since the first commercial network was deployed in 1993. D-AMPS is considered end-of-life, and existing networks have mostly been replaced by GSM/GPRS or CDMA2000 technologies.

<span class="mw-page-title-main">Cellular network</span> Communication network

A cellular network or mobile network is a telecommunications network where the link to and from end nodes is wireless and the network is distributed over land areas called cells, each served by at least one fixed-location transceiver. These base stations provide the cell with the network coverage which can be used for transmission of voice, data, and other types of content. A cell typically uses a different set of frequencies from neighboring cells, to avoid interference and provide guaranteed service quality within each cell.

<span class="mw-page-title-main">Evolution-Data Optimized</span> Telecommunications standard for the wireless transmission of data through radio signals

Evolution-Data Optimized is a telecommunications standard for the wireless transmission of data through radio signals, typically for broadband Internet access. EV-DO is an evolution of the CDMA2000 (IS-2000) standard which supports high data rates and can be deployed alongside a wireless carrier's voice services. It uses advanced multiplexing techniques including code-division multiple access (CDMA) as well as time-division multiplexing (TDM) to maximize throughput. It is a part of the CDMA2000 family of standards and has been adopted by many mobile phone service providers around the world particularly those previously employing CDMA networks. It is also used on the Globalstar satellite phone network.

<span class="mw-page-title-main">Statistical time-division multiplexing</span>

Statistical multiplexing is a type of communication link sharing, very similar to dynamic bandwidth allocation (DBA). In statistical multiplexing, a communication channel is divided into an arbitrary number of variable bitrate digital channels or data streams. The link sharing is adapted to the instantaneous traffic demands of the data streams that are transferred over each channel. This is an alternative to creating a fixed sharing of a link, such as in general time division multiplexing (TDM) and frequency division multiplexing (FDM). When performed correctly, statistical multiplexing can provide a link utilization improvement, called the statistical multiplexing gain.

The air interface, or access mode, is the communication link between the two stations in mobile or wireless communication. The air interface involves both the physical and data link layers of the OSI model for a connection.

<span class="mw-page-title-main">Orthogonal frequency-division multiple access</span> Multi-user version of OFDM digital modulation

Orthogonal frequency-division multiple access (OFDMA) is a multi-user version of the popular orthogonal frequency-division multiplexing (OFDM) digital modulation scheme. Multiple access is achieved in OFDMA by assigning subsets of subcarriers to individual users. This allows simultaneous low-data-rate transmission from several users.

Multi-carrier code-division multiple access (MC-CDMA) is a multiple access scheme used in OFDM-based telecommunication systems, allowing the system to support multiple users at the same time over same frequency band.

<span class="mw-page-title-main">E-UTRA</span> 3GPP interface

E-UTRA is the air interface of 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) upgrade path for mobile networks. It is an acronym for Evolved UMTS Terrestrial Radio Access, also known as the Evolved Universal Terrestrial Radio Access in early drafts of the 3GPP LTE specification. E-UTRAN is the combination of E-UTRA, user equipment (UE), and a Node B.

<span class="mw-page-title-main">Comparison of mobile phone standards</span>

This is a comparison of standards of wireless networking technologies for devices such as mobile phones. A new generation of cellular standards has appeared approximately every tenth year since 1G systems were introduced in 1979 and the early to mid-1980s.

Single-carrier FDMA (SC-FDMA) is a frequency-division multiple access scheme. Originally known as Carrier Interferometry, it is also called linearly precoded OFDMA (LP-OFDMA). Like other multiple access schemes, it deals with the assignment of multiple users to a shared communication resource. SC-FDMA can be interpreted as a linearly precoded OFDMA scheme, in the sense that it has an additional DFT processing step preceding the conventional OFDMA processing.

In radio resource management for wireless and cellular networks, channel allocation schemes allocate bandwidth and communication channels to base stations, access points and terminal equipment. The objective is to achieve maximum system spectral efficiency in bit/s/Hz/site by means of frequency reuse, but still assure a certain grade of service by avoiding co-channel interference and adjacent channel interference among nearby cells or networks that share the bandwidth.

Radio resource management (RRM) is the system level management of co-channel interference, radio resources, and other radio transmission characteristics in wireless communication systems, for example cellular networks, wireless local area networks, wireless sensor systems, and radio broadcasting networks. RRM involves strategies and algorithms for controlling parameters such as transmit power, user allocation, beamforming, data rates, handover criteria, modulation scheme, error coding scheme, etc. The objective is to utilize the limited radio-frequency spectrum resources and radio network infrastructure as efficiently as possible.

International Mobile Telecommunications-Advanced are the requirements issued by the ITU Radiocommunication Sector (ITU-R) of the International Telecommunication Union (ITU) in 2008 for what is marketed as 4G mobile phone and Internet access service.

<span class="mw-page-title-main">Routing in cellular networks</span>

Network routing in a cellular network deals with the challenges of traditional telephony such as switching and call setup.

References

  1. 1 2 3 Guowang Miao; Jens Zander; Ki Won Sung; Ben Slimane (2016). Fundamentals of Mobile Data Networks. Cambridge University Press. ISBN   978-1107143210.
  2. Daniel Minoli (3 February 2009). Satellite Systems Engineering in an IPv6 Environment. CRC Press. pp. 136–. ISBN   978-1-4200-7868-8 . Retrieved 1 June 2012.
  3. Rom, Raphael; Sidi, Moshe (1990). Multiple Access Protocols. Springer-Verlag/University of Michigan. doi:10.1007/978-1-4612-3402-9.
  4. Kornel Terplan (2000). The Telecommunications Handbook. CRC Press. pp. 266–. ISBN   978-0-8493-3137-4 . Retrieved 1 June 2012.
  5. "Fundamentals of Communications Access Technologies: FDMA, TDMA, CDMA, OFDMA, AND SDMA". Electronic Design. 2013-01-22. Retrieved 2014-08-28.
  6. Halit Eren (Nov 16, 2005). Wireless Sensors and Instruments: Networks, Design, and Applications. CRC Press. p. 112. ISBN   9781420037401.
  7. Sadique, Abubaker. "Multiple Access Techniques in communication: FDMA, TDMA, CDMA". Archived from the original on 2019-10-09.
  8. Elinav, Doron; Rubin, Mati E.; Brener, Snir (Mar 6, 2014), Power Division Multiple Access , retrieved 2016-06-29
  9. 1 2 3 Qualcomm, Qualcomm. "The world-changing technology that almost wasn't". Qualcomm.
  10. Tibken, Shara (2011-12-21). "Qualcomm Founder Set to Retire". Wall Street Journal. ISSN   0099-9660 . Retrieved 2019-12-03.
  11. 1 2 Mock, Dave (2005). The Qualcomm Equation: How a Fledgling Telecom Company Forged a New Path to Big Profits and Market Dominance. Amacom. ISBN   978-0-8144-2858-0.

PD-icon.svg This article incorporates public domain material from Federal Standard 1037C. General Services Administration. Archived from the original on 2022-01-22. (in support of MIL-STD-188).