This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these messages)
|
Dynamic Source Routing (DSR) is a routing protocol for wireless mesh networks. It is similar to AODV in that it forms a route on-demand when a transmitting node requests one. However, it uses source routing instead of relying on the routing table at each intermediate device.
Usually, in environments where infrastructure like routers and access points are absent, DSR enables efficient data packet routing by relying on the cooperation of individual nodes to relay messages to the intended destinations. This protocol plays a crucial role in mobile ad hoc networks (MANETs) , where network topology can frequently change due to node mobility, leading to the need for adaptive, efficient routing.
Determining the source route requires accumulating the address of each device between the source and destination during route discovery. The accumulated path information is cached by nodes processing the route discovery packets. The learned paths are used to route packets. To accomplish source routing, the routed packets contain the address of each device the packet will traverse. This may result in high overhead for long paths or large addresses, like IPv6. To avoid using source routing, DSR optionally defines a flow id option that allows packets to be forwarded on a hop-by-hop basis.
This protocol is truly based on source routing whereby all the routing information is maintained (continually updated) at mobile nodes. It has only two major phases, which are Route Discovery and Route Maintenance. Route Reply would only be generated if the message has reached the intended destination node (route record which is initially contained in Route Request would be inserted into the Route Reply).
To return the Route Reply, the destination node must have a route to the source node. If the route is in the Destination Node's route cache, the route would be used. Otherwise, the node will reverse the route based on the route record in the Route Request message header (this requires that all links are symmetric). In the event of fatal transmission, the Route Maintenance Phase is initiated whereby the Route Error packets are generated at a node. The erroneous hop will be removed from the node's route cache; all routes containing the hop are truncated at that point. Again, the Route Discovery Phase is initiated to determine the most viable route.
For information on other similar protocols, see the list of ad hoc routing protocols.
Dynamic source routing protocol (DSR) is an on-demand protocol designed to restrict the bandwidth consumed by control packets in ad hoc wireless networks by eliminating the periodic table-update messages required in the table-driven approach. The major difference between this and the other on-demand routing protocols is that it is beacon-less and hence does not require periodic hello packet (beacon) transmissions, which are used by a node to inform its neighbors of its presence. The basic approach of this protocol (and all other on-demand routing protocols) during the route construction phase is to establish a route by flooding Route Request packets in the network. The destination node, on receiving a Route Request packet, responds by sending a Route Reply packet back to the source, which carries the route traversed by the Route Request packet received.
Consider a source node that does not have a route to the destination. When it has data packets to be sent to that destination, it initiates a RouteRequest packet. This Route Request is flooded throughout the network. Each node, upon receiving a Route Request packet, rebroadcasts the packet to its neighbors if it has not forwarded it already, provided that the node is not the destination node and that the packet’s time to live (TTL) counter has not been exceeded.
Each Route Request carries a sequence number generated by the source node and the path it has traversed. A node, upon receiving a Route Request packet, checks the sequence number on the packet before forwarding it. The packet is forwarded only if it is not a duplicate Route Request. The sequence number on the packet is used to prevent loop formations and to avoid multiple transmissions of the same Route Request by an intermediate node that receives it through multiple paths.
Thus, all nodes except the destination forward a Route Request packet during the route construction phase. A destination node, after receiving the first Route Request packet, replies to the source node through the reverse path the Route Request packet had traversed. Nodes can also learn about the neighboring routes traversed by data packets if operated in the promiscuous mode (the mode of operation in which a node can receive the packets that are neither broadcast nor addressed to itself). This route cache is also used during the route construction phase.
This protocol uses a reactive approach which eliminates the need to periodically flood the network with table update messages which are required in a table-driven approach. In a reactive (on-demand) approach such as this, a route is established only when it is required and hence the need to find routes to all other nodes in the network as required by the table-driven approach is eliminated. The intermediate nodes also utilize the route cache information efficiently to reduce the control overhead.
The disadvantage of this protocol is that the route maintenance mechanism does not locally repair a broken link. Stale route cache information could also result in inconsistencies during the route reconstruction phase. The connection setup delay is higher than in table-driven protocols. Even though the protocol performs well in static and low-mobility environments, the performance degrades rapidly with increasing mobility. Also, considerable routing overhead is involved due to the source-routing mechanism employed in DSR. This routing overhead is directly proportional to the path length.
Routing is the process of selecting a path for traffic in a network or between or across multiple networks. Broadly, routing is performed in many types of networks, including circuit-switched networks, such as the public switched telephone network (PSTN), and computer networks, such as the Internet.
In computing, traceroute
and tracert
are diagnostic command-line interface commands for displaying possible routes (paths) and transit delays of packets across an Internet Protocol (IP) network.
Link-state routing protocols are one of the two main classes of routing protocols used in packet switching networks for computer communications, the others being distance-vector routing protocols. Examples of link-state routing protocols include Open Shortest Path First (OSPF) and Intermediate System to Intermediate System (IS-IS).
DSRFLOW, the Flow-State extensions to Dynamic Source Routing (DSR), are a set of extensions that provide all of the benefits of source routing, without most of the per-packet overhead that is associated with source routing. It works by allowing most packets to be sent without a source route header, thus substantially reducing overhead. Indeed, one of the disadvantages of DSR was that the longer the source route of the packet was, the bigger the packet header became. The technique used is called implicit source routing. Flow state extensions to DSR were first described in "Implicit Source Routes for On-Demand Ad Hoc Network Routing" by Yih-Chun Hu and David B. Johnson (2001).
The Optimized Link State Routing Protocol (OLSR) is an IP routing protocol optimized for mobile ad hoc networks, which can also be used on other wireless ad hoc networks. OLSR is a proactive link-state routing protocol, which uses hello and topology control (TC) messages to discover and then disseminate link state information throughout the mobile ad hoc network. Individual nodes use this topology information to compute next hop destinations for all nodes in the network using shortest hop forwarding paths.
Ad hoc On-Demand Distance Vector (AODV) Routing is a routing protocol for mobile ad hoc networks (MANETs) and other wireless ad hoc networks. It was jointly developed by Charles Perkins and Elizabeth Royer and was first published in the ACM 2nd IEEE Workshop on Mobile Computing Systems and Applications in February 1999.
The Temporally Ordered Routing Algorithm (TORA) is an algorithm for routing data across Wireless Mesh Networks or Mobile ad hoc networks.
Zone Routing Protocol, or ZRP is a hybrid wireless networking routing protocol that uses both proactive and reactive routing protocols when sending information over the network. ZRP was designed to speed up delivery and reduce processing overhead by selecting the most efficient type of protocol to use throughout the route.
The OrderOne MANET Routing Protocol is an algorithm for computers communicating by digital radio in a mesh network to find each other, and send messages to each other along a reasonably efficient path. It was designed for, and promoted as working with wireless mesh networks.
The Neighbor Discovery Protocol (NDP), or simply Neighbor Discovery (ND), is a protocol of the Internet protocol suite used with Internet Protocol Version 6 (IPv6). It operates at the internet layer of the Internet model, and is responsible for gathering various information required for network communication, including the configuration of local connections and the domain name servers and gateways.
A wireless ad hoc network (WANET) or mobile ad hoc network (MANET) is a decentralized type of wireless network. The network is ad hoc because it does not rely on a pre-existing infrastructure, such as routers or wireless access points. Instead, each node participates in routing by forwarding data for other nodes. The determination of which nodes forward data is made dynamically on the basis of network connectivity and the routing algorithm in use.
The Better Approach to Mobile Ad-hoc Networking (B.A.T.M.A.N.) is a routing protocol for multi-hop mobile ad hoc networks which is under development by the German "Freifunk" community and intended to replace the Optimized Link State Routing Protocol (OLSR) as OLSR did not meet the performance requirements of large-scale mesh deployments.
The Wireless Routing Protocol (WRP) is a proactive unicast routing protocol for mobile ad hoc networks (MANETs).
Routing in delay-tolerant networking concerns itself with the ability to transport, or route, data from a source to a destination, which is a fundamental ability all communication networks must have. Delay- and disruption-tolerant networks (DTNs) are characterized by their lack of connectivity, resulting in a lack of instantaneous end-to-end paths. In these challenging environments, popular ad hoc routing protocols such as AODV and DSR fail to establish routes. This is due to these protocols trying to first establish a complete route and then, after the route has been established, forward the actual data. However, when instantaneous end-to-end paths are difficult or impossible to establish, routing protocols must take to a "store and forward" approach, where data is incrementally moved and stored throughout the network in hopes that it will eventually reach its destination. A common technique used to maximize the probability of a message being successfully transferred is to replicate many copies of the message in hopes that one will succeed in reaching its destination.
In wired computer networking a hop occurs when a packet is passed from one network segment to the next. Data packets pass through routers as they travel between source and destination. The hop count refers to the number of network devices through which data passes from source to destination.
Scalable Source Routing (SSR) is a routing protocol for unstructured networks such as mobile ad hoc networks, mesh networks, or sensor networks. It combines source routing with routing along a virtual ring, and is based on the idea of "pushing Chord into the underlay".
Fisheye State Routing (FSR) is a proposal for an implicit hierarchical routing protocol targeted to ad hoc networks. The basic principles of FSR are shared with other proactive, link-state routing protocols. In proactive link-state protocols every network node constantly updates a topology map that makes it possible to compute the shortest path to any destination in the network. The originality of FSR is inspired by the "fisheye" technique to reduce the size of information required to represent graphical data: The eye of a fish captures with high detail the pixels near the focal point, while the detail decreases as the distance from the focal point increases.
A mobile wireless sensor network (MWSN) can simply be defined as a wireless sensor network (WSN) in which the sensor nodes are mobile. MWSNs are a smaller, emerging field of research in contrast to their well-established predecessor. MWSNs are much more versatile than static sensor networks as they can be deployed in any scenario and cope with rapid topology changes. However, many of their applications are similar, such as environment monitoring or surveillance. Commonly, the nodes consist of a radio transceiver and a microcontroller powered by a battery, as well as some kind of sensor for detecting light, heat, humidity, temperature, etc.
Associativity-based routing is a mobile routing protocol invented for wireless ad hoc networks, also known as mobile ad hoc networks (MANETs) and wireless mesh networks. ABR was invented in 1993, filed for a U.S. patent in 1996, and granted the patent in 1999. ABR was invented by Chai Keong Toh while doing his Ph.D. at Cambridge University.
It was first described in: