IEEE 802.15.4

Last updated

IEEE 802.15.4 is a technical standard which defines the operation of low-rate wireless personal area networks (LR-WPANs). It specifies the physical layer and media access control for LR-WPANs, and is maintained by the IEEE 802.15 working group, which defined the standard in 2003. [1] It is the basis for the Zigbee, [2] ISA100.11a, [3] WirelessHART, MiWi, 6LoWPAN, Thread and SNAP specifications, each of which further extends the standard by developing the upper layers which are not defined in IEEE 802.15.4. In particular, 6LoWPAN defines a binding for the IPv6 version of the Internet Protocol (IP) over WPANs, and is itself used by upper layers like Thread.

Personal area network Computer network centered on an individual persons workspace

A personal area network (PAN) is a computer network for interconnecting devices centered on an individual person's workspace. A PAN provides data transmission among devices such as computers, smartphones, tablets and personal digital assistants. PANs can be used for communication among the personal devices themselves, or for connecting to a higher level network and the Internet where one master device takes up the role as gateway. A PAN may be wireless or carried over wired interfaces such as USB.

In the seven-layer OSI model of computer networking, the physical layer or layer 1 is the first and lowest layer. This layer may be implemented by a PHY chip.

IEEE 802.15 is a working group of the Institute of Electrical and Electronics Engineers (IEEE) IEEE 802 standards committee which specifies wireless personal area network (WPAN) standards. There are 10 major areas of development, not all of which are active.

Contents

Overview

IEEE standard 802.15.4 intends to offer the fundamental lower network layers of a type of wireless personal area network (WPAN) which focuses on low-cost, low-speed ubiquitous communication between devices. It can be contrasted with other approaches, such as Wi-Fi, which offer more bandwidth and require more power. The emphasis is on very low cost communication of nearby devices with little to no underlying infrastructure, intending to exploit this to lower power consumption even more.

Wi-Fi wireless local area network technology based on IEEEs 802.11 standards

Wi-Fi is a family of radio technologies that is commonly used for the wireless local area networking (WLAN) of devices which is based around the IEEE 802.11 family of standards. Wi‑Fi is a trademark of the Wi-Fi Alliance, which restricts the use of the term Wi-Fi Certified to products that successfully complete interoperability certification testing. Wi-Fi uses multiple parts of the IEEE 802 protocol family and is designed to seamlessly interwork with its wired sister protocol Ethernet.

The basic framework conceives a 10-meter communications range with a transfer rate of 250 kbit/s. Tradeoffs are possible to favor more radically embedded devices with even lower power requirements, through the definition of not one, but several physical layers. Lower transfer rates of 20 and 40 kbit/s were initially defined, with the 100 kbit/s rate being added in the current revision.

Embedded system computer system with a dedicated function within a larger mechanical or electrical system

An embedded system is a controller programmed and controlled by a real-time operating system (RTOS) with a dedicated function within a larger mechanical or electrical system, often with real-time computing constraints. It is embedded as part of a complete device often including hardware and mechanical parts. Embedded systems control many devices in common use today. Ninety-eight percent of all microprocessors manufactured are used in embedded systems.

Even lower rates can be considered with the resulting effect on power consumption. As already mentioned, the main identifying feature of IEEE 802.15.4 among WPANs is the importance of achieving extremely low manufacturing and operation costs and technological simplicity, without sacrificing flexibility or generality.

Important features include real-time suitability by reservation of Guaranteed Time Slots (GTS), collision avoidance through CSMA/CA and integrated support for secure communications. Devices also include power management functions such as link quality and energy detection. The standard does have provisions for supporting time and rate sensitive applications because of its ability to operate in pure CSMA/CA or TDMA access modes. The TDMA mode of operation is supported via the GTS feature of the standard. [4]

In computer science, real-time computing (RTC), or reactive computing describes hardware and software systems subject to a "real-time constraint", for example from event to system response. Real-time programs must guarantee response within specified time constraints, often referred to as "deadlines". The correctness of these types of systems depends on their temporal aspects as well as their functional aspects. Real-time responses are often understood to be in the order of milliseconds, and sometimes microseconds. A system not specified as operating in real time cannot usually guarantee a response within any timeframe, although typical or expected response times may be given.

Time-division multiple access channel access method for shared medium networks

Time-division multiple access (TDMA) is a channel access method for shared-medium networks. It allows several users to share the same frequency channel by dividing the signal into different time slots. The users transmit in rapid succession, one after the other, each using its own time slot. This allows multiple stations to share the same transmission medium while using only a part of its channel capacity. TDMA is used in the digital 2G cellular systems such as Global System for Mobile Communications (GSM), IS-136, Personal Digital Cellular (PDC) and iDEN, and in the Digital Enhanced Cordless Telecommunications (DECT) standard for portable phones. TDMA was first used in satellite communication systems by Western Union in its Westar 3 communications satellite in 1979. It is now used extensively in satellite communications, combat-net radio systems, and passive optical network (PON) networks for upstream traffic from premises to the operator. For usage of Dynamic TDMA packet mode communication, see below.

IEEE 802.15.4-conformant devices may use one of three possible frequency bands for operation (868/915/2450 MHz).

Frequency allocation

Frequency allocation is the allocation and regulation of the electromagnetic spectrum into radio frequency bands, which is normally done by governments in most countries. Because radio propagation does not stop at national boundaries, governments have sought to harmonise the allocation of RF bands and their standardization.

Protocol architecture

IEEE 802.15.4 protocol stack IEEE 802.15.4 protocol stack.svg
IEEE 802.15.4 protocol stack

Devices are conceived to interact with each other over a conceptually simple wireless network. The definition of the network layers is based on the OSI model; although only the lower layers are defined in the standard, interaction with upper layers is intended, possibly using an IEEE 802.2 logical link control sublayer accessing the MAC through a convergence sublayer. Implementations may rely on external devices or be purely embedded, self-functioning devices.

Wireless network any network at least partly not connected by physical cables of any kind

A wireless network is a computer network that uses wireless data connections between network nodes.

OSI model Model with 7 layers to describe communications systems

The Open Systems Interconnection model is a conceptual model that characterizes and standardizes the communication functions of a telecommunication or computing system without regard to its underlying internal structure and technology. Its goal is the interoperability of diverse communication systems with standard protocols. The model partitions a communication system into abstraction layers. The original version of the model defined seven layers.

IEEE 802.2 is the original name of the ISO/IEC 8802-2 standard which defines logical link control (LLC) as the upper portion of the data link layer of the OSI Model. The original standard developed by the Institute of Electrical and Electronics Engineers (IEEE) in collaboration with the American National Standards Institute (ANSI) was adopted by the International Organization for Standardization (ISO) in 1998, but it still remains an integral part of the family of IEEE 802 standards for local and metropolitan networks.

The physical layer

The physical layer is the initial layer in the OSI reference model used worldwide. The physical layer (PHY) ultimately provides the data transmission service, as well as the interface to the physical layer management entity, which offers access to every layer management function and maintains a database of information on related personal area networks. Thus, the PHY manages the physical RF transceiver and performs channel selection and energy and signal management functions. It operates on one of three possible unlicensed frequency bands:

The original 2003 version of the standard specifies two physical layers based on direct sequence spread spectrum (DSSS) techniques: one working in the 868/915 MHz bands with transfer rates of 20 and 40 kbit/s, and one in the 2450 MHz band with a rate of 250 kbit/s.

The 2006 revision improves the maximum data rates of the 868/915 MHz bands, bringing them up to support 100 and 250 kbit/s as well. Moreover, it goes on to define four physical layers depending on the modulation method used. Three of them preserve the DSSS approach: in the 868/915 MHz bands, using either binary or offset quadrature phase shift keying (the second of which is optional); in the 2450 MHz band, using the latter. An alternative, optional 868/915 MHz layer is defined using a combination of binary keying and amplitude shift keying (thus based on parallel, not sequential spread spectrum, PSSS). Dynamic switching between supported 868/915 MHz PHYs is possible.

Beyond these three bands, the IEEE 802.15.4c study group considered the newly opened 314–316 MHz, 430–434 MHz, and 779–787 MHz bands in China, while the IEEE 802.15 Task Group 4d defined an amendment to 802.15.4-2006 to support the new 950–956 MHz band in Japan. First standard amendments by these groups were released in April 2009.

In August 2007, IEEE 802.15.4a was released expanding the four PHYs available in the earlier 2006 version to six, including one PHY using Direct Sequence ultra-wideband (UWB) and another using chirp spread spectrum (CSS). The UWB PHY is allocated frequencies in three ranges: below 1 GHz, between 3 and 5 GHz, and between 6 and 10 GHz. The CSS PHY is allocated spectrum in the 2450 MHz ISM band. [6]

In April, 2009 IEEE 802.15.4c and IEEE 802.15.4d were released expanding the available PHYs with several additional PHYs: one for 780 MHz band using O-QPSK or MPSK, [7] another for 950 MHz using GFSK or BPSK. [8]

IEEE 802.15.4e was chartered to define a MAC amendment to the existing standard 802.15.4-2006 which adopts channel hopping strategy to improve support for the industrial markets, increases robustness against external interference and persistent multi-path fading. On February 6, 2012 the IEEE Standards Association Board approved the IEEE 802.15.4e which concluded all Task Group 4e efforts.

The MAC layer

The medium access control (MAC) enables the transmission of MAC frames through the use of the physical channel. Besides the data service, it offers a management interface and itself manages access to the physical channel and network beaconing. It also controls frame validation, guarantees time slots and handles node associations. Finally, it offers hook points for secure services.

Note that the IEEE 802.15 standard does not use 802.1D or 802.1Q, i.e., it does not exchange standard Ethernet frames. The physical frame-format is specified in IEEE802.15.4-2011 in section 5.2. It is tailored to the fact that most IEEE 802.15.4 PHYs only support frames of up to 127 bytes (adaptation layer protocols such as 6LoWPAN provide fragmentation schemes to support larger network layer packets).

Higher layers

No higher-level layers and interoperability sublayers are defined in the standard. Other specifications - such as ZigBee, SNAP, and 6LoWPAN/Thread - build on this standard. RIOT, OpenWSN, TinyOS, Unison RTOS, DSPnano RTOS, nanoQplus, Contiki and Zephyr operating systems also use a few items of IEEE 802.15.4 hardware and software.

Network model

Node types

The standard defines two types of network node.

The first one is the full-function device (FFD). It can serve as the coordinator of a personal area network just as it may function as a common node. It implements a general model of communication which allows it to talk to any other device: it may also relay messages, in which case it is dubbed a coordinator (PAN coordinator when it is in charge of the whole network).

On the other hand, there are reduced-function devices (RFD). These are meant to be extremely simple devices with very modest resource and communication requirements; due to this, they can only communicate with FFDs and can never act as coordinators.

Topologies

IEEE 802.15.4 star and peer-to-peer IEEE 802.15.4 Star P2P.svg
IEEE 802.15.4 star and peer-to-peer
IEEE 802.15.4 cluster tree IEEE 802.15.4 cluster tree.png
IEEE 802.15.4 cluster tree

Networks can be built as either peer-to-peer or star networks. However, every network needs at least one FFD to work as the coordinator of the network. Networks are thus formed by groups of devices separated by suitable distances. Each device has a unique 64-bit identifier, and if some conditions are met, short 16-bit identifiers can be used within a restricted environment. Namely, within each PAN domain, communications will probably use short identifiers.

Peer-to-peer (or point-to-point) networks can form arbitrary patterns of connections, and their extension is only limited by the distance between each pair of nodes. They are meant to serve as the basis for ad hoc networks capable of performing self-management and organization. Since the standard does not define a network layer, routing is not directly supported, but such an additional layer can add support for multihop communications. Further topological restrictions may be added; the standard mentions the cluster tree as a structure which exploits the fact that an RFD may only be associated with one FFD at a time to form a network where RFDs are exclusively leaves of a tree, and most of the nodes are FFDs. The structure can be extended as a generic mesh network whose nodes are cluster tree networks with a local coordinator for each cluster, in addition to the global coordinator.

A more structured star pattern is also supported, where the coordinator of the network will necessarily be the central node. Such a network can originate when an FFD decides to create its own PAN and declare itself its coordinator, after choosing a unique PAN identifier. After that, other devices can join the network, which is fully independent from all other star networks.

Data transport architecture

Frames are the basic unit of data transport, of which there are four fundamental types (data, acknowledgment, beacon and MAC command frames), which provide a reasonable tradeoff between simplicity and robustness. Additionally, a superframe structure, defined by the coordinator, may be used, in which case two beacons act as its limits and provide synchronization to other devices as well as configuration information. A superframe consists of sixteen equal-length slots, which can be further divided into an active part and an inactive part, during which the coordinator may enter power saving mode, not needing to control its network.

Within superframes contention occurs between their limits, and is resolved by CSMA/CA. Every transmission must end before the arrival of the second beacon. As mentioned before, applications with well-defined bandwidth needs can use up to seven domains of one or more contentionless guaranteed time slots, trailing at the end of the superframe. The first part of the superframe must be sufficient to give service to the network structure and its devices. Superframes are typically utilized within the context of low-latency devices, whose associations must be kept even if inactive for long periods of time.

Data transfers to the coordinator require a beacon synchronization phase, if applicable, followed by CSMA/CA transmission (by means of slots if superframes are in use); acknowledgment is optional. Data transfers from the coordinator usually follow device requests: if beacons are in use, these are used to signal requests; the coordinator acknowledges the request and then sends the data in packets which are acknowledged by the device. The same is done when superframes are not in use, only in this case there are no beacons to keep track of pending messages.

Point-to-point networks may either use unslotted CSMA/CA or synchronization mechanisms; in this case, communication between any two devices is possible, whereas in "structured" modes one of the devices must be the network coordinator.

In general, all implemented procedures follow a typical request-confirm/indication-response classification.

Reliability and security

The physical medium is accessed through a CSMA/CA protocol. Networks which are not using beaconing mechanisms utilize an unslotted variation which is based on the listening of the medium, leveraged by a random exponential backoff algorithm; acknowledgments do not adhere to this discipline. Common data transmission utilizes unallocated slots when beaconing is in use; again, confirmations do not follow the same process.

Confirmation messages may be optional under certain circumstances, in which case a success assumption is made. Whatever the case, if a device is unable to process a frame at a given time, it simply does not confirm its reception: timeout-based retransmission can be performed a number of times, following after that a decision of whether to abort or keep trying.

Because the predicted environment of these devices demands maximization of battery life, the protocols tend to favor the methods which lead to it, implementing periodic checks for pending messages, the frequency of which depends on application needs.

Regarding secure communications, the MAC sublayer offers facilities which can be harnessed by upper layers to achieve the desired level of security. Higher-layer processes may specify keys to perform symmetric cryptography to protect the payload and restrict it to a group of devices or just a point-to-point link; these groups of devices can be specified in access control lists. Furthermore, MAC computes freshness checks between successive receptions to ensure that presumably old frames, or data which is no longer considered valid, does not transcend to higher layers.

In addition to this secure mode, there is another, insecure MAC mode, which allows access control lists [2] merely as a means to decide on the acceptance of frames according to their (presumed) source.

See also

Related Research Articles

IEEE 802.11 set of media access control (MAC) and physical layer (PHY) specifications

IEEE 802.11 is part of the IEEE 802 set of LAN protocols, and specifies the set of media access control (MAC) and physical layer (PHY) protocols for implementing wireless local area network (WLAN) Wi-Fi computer communication in various frequencies, including but not limited to 2.4, 5, and 60 GHz frequency bands.

IEEE 802.3 is a working group and a collection of Institute of Electrical and Electronics Engineers (IEEE) standards produced by the working group defining the physical layer and data link layer's media access control (MAC) of wired Ethernet. This is generally a local area network (LAN) technology with some wide area network (WAN) applications. Physical connections are made between nodes and/or infrastructure devices by various types of copper or fiber cable.

Fast Ethernet Ethernet standards that carry traffic at the nominal rate of 100 Mbit/s

In computer networking, Fast Ethernet physical layers carry traffic at the nominal rate of 100 Mbit/s. The prior Ethernet speed was 10 Mbit/s. Of the Fast Ethernet physical layers, 100BASE-TX is by far the most common.

The data layer, or layer 2, is the second layer of the seven-layer OSI model of computer networking. This layer is the protocol layer that transfers data between adjacent network nodes in a wide area network (WAN) or between nodes on the same local area network (LAN) segment. The data link layer provides the functional and procedural means to transfer data between network entities and might provide the means to detect and possibly correct errors that may occur in the physical layer.

Zigbee

Zigbee is an IEEE 802.15.4-based specification for a suite of high-level communication protocols used to create personal area networks with small, low-power digital radios, such as for home automation, medical device data collection, and other low-power low-bandwidth needs, designed for small scale projects which need wireless connection. Hence, Zigbee is a low-power, low data rate, and close proximity wireless ad hoc network.

Medium access control a service layer in IEEE 802 network standards

In IEEE 802 LAN/MAN standards, the medium access control (MAC) sublayer is the layer that controls the hardware responsible for interaction with the wired, optical or wireless transmission medium. The MAC sublayer and the logical link control (LLC) sublayer together make up the data link layer. Within the data link layer, the LLC provides flow control and multiplexing for the logical link, while the MAC provides flow control and multiplexing for the transmission medium.

A network segment is a portion of a computer network. The nature and extent of a segment depends on the nature of the network and the device or devices used to interconnect end stations.

HiperLAN is a Wireless LAN standard. It is a European alternative for the IEEE 802.11 standards. It is defined by the European Telecommunications Standards Institute (ETSI). In ETSI the standards are defined by the BRAN project. The HiperLAN standard family has four different versions.

IEEE 802.11e-2005 or 802.11e is an approved amendment to the IEEE 802.11 standard that defines a set of quality of service (QoS) enhancements for wireless LAN applications through modifications to the media access control (MAC) layer. The standard is considered of critical importance for delay-sensitive applications, such as Voice over Wireless LAN and streaming multimedia. The amendment has been incorporated into the published IEEE 802.11-2007 standard.

IEEE 802.22, is a standard for wireless regional area network (WRAN) using white spaces in the television (TV) frequency spectrum. The development of the IEEE 802.22 WRAN standard is aimed at using cognitive radio (CR) techniques to allow sharing of geographically unused spectrum allocated to the television broadcast service, on a non-interfering basis, to bring broadband access to hard-to-reach, low population density areas, typical of rural environments, and is therefore timely and has the potential for a wide applicability worldwide. It is the first worldwide effort to define a standardized air interface based on CR techniques for the opportunistic use of TV bands on a non-interfering basis.

Ethernet flow control technology for computer networking

Ethernet flow control is a mechanism for temporarily stopping the transmission of data on Ethernet family computer networks. The goal of this mechanism is to ensure zero packet loss in the presence of network congestion.

IEEE 802.11n-2009, commonly shortened to 802.11n, is a wireless-networking standard that uses multiple antennas to increase data rates. Wi-Fi Alliance have also labelled the technology for the standard as Wi-Fi 4. It standardized support for multiple-input multiple-output, frame aggregation, and security improvements, among other features, and can be used in the 2.4 GHz or 5 GHz frequency bands.

6LoWPAN is an acronym of IPv6 over Low -Power Wireless Personal Area Networks. 6LoWPAN is the name of a concluded working group in the Internet area of the IETF.

A wide variety of different wireless data technologies exist, some in direct competition with one another, others designed for specific applications. Wireless technologies can be evaluated by a variety of different metrics of which some are described in this entry.

IEEE 802.11b-1999 or 802.11b, is an amendment to the IEEE 802.11 wireless networking specification that extends throughput up to 11 Mbit/s using the same 2.4GHz band. A related amendment was incorporated into the IEEE 802.11-2007 standard.

Chirp spread spectrum spread spectrum technique

In digital communications, chirp spread spectrum (CSS) is a spread spectrum technique that uses wideband linear frequency modulated chirp pulses to encode information. A chirp is a sinusoidal signal of frequency increase or decrease over time. In the picture is an example of an upchirp in which the frequency increases linearly over time. Sometimes the frequency of upchirps increase exponentially over time.

IEEE 802.15.4a was an amendment to IEEE 802.15.4-2006 specifying that additional physical layers (PHYs) be added to the original standard. It has been merged into and is superseded by IEEE 802.15.4-2011.

10 Gigabit Ethernet various technologies for transmitting Ethernet frames

10 Gigabit Ethernet is a group of computer networking technologies for transmitting Ethernet frames at a rate of 10 gigabits per second. It was first defined by the IEEE 802.3ae-2002 standard. Unlike previous Ethernet standards, 10 Gigabit Ethernet defines only full-duplex point-to-point links which are generally connected by network switches; shared-medium CSMA/CD operation has not been carried over from the previous generations Ethernet standards so half-duplex operation and repeater hubs do not exist in 10GbE.

OCARI wireless communication protocol

OCARI is a low-rate wireless personal area networks (LR-WPAN) communication protocol that derives from the IEEE 802.15.4 standard. It was developed by the following consortium during the OCARI project that is funded by the French National Research Agency (ANR):

References

  1. IEEE 802.15 WPAN™ Task Group 4, http://www.ieee802.org/15/pub/TG4.html
  2. 1 2 Gascón, David (February 5, 2009). "Security in 802.15.4 and ZigBee networks" . Retrieved 9 December 2010.
  3. "ISA100 Committee Home Page" . Retrieved 20 July 2011.
  4. A. Mishra, C. Na and D. Rosenburgh, "On Scheduling Guaranteed Time Slots for Time Sensitive Transactions in IEEE 802.15.4 Networks," MILCOM 2007 - IEEE Military Communications Conference, Orlando, FL, USA, 2007, pp. 1-7. https://ieeexplore.ieee.org/abstract/document/4455149/
  5. IEEE Std 802.15.4-2011 8.1.2.2
  6. IEEE Computer Society, (August 31, 2007). IEEE Standard 802.15.4a-2007
  7. IEEE Computer Society, (April 17, 2009). IEEE Standard 802.15.4c-2009
  8. IEEE Computer Society, (April 17, 2009). IEEE Standard 802.15.4d-2009