Cable modem

Last updated

Example of a cable modem installed in a home office. CBN CG3368 cable modem.jpg
Example of a cable modem installed in a home office.

A cable modem is a type of network bridge that provides bi-directional data communication via radio frequency channels on a hybrid fiber-coaxial (HFC), radio frequency over glass (RFoG) and coaxial cable infrastructure. Cable modems are primarily used to deliver broadband Internet access in the form of cable Internet, taking advantage of the high bandwidth of a HFC and RFoG network. They are commonly deployed in the Americas, Asia, Australia, and Europe.

Contents

History

MITRE Cablenet

Internet Experiment Note (IEN) 96 [1] (1979) describes an early RF cable modem system. From pages 2 and 3 of IEN 96:

The Cable-Bus System

The MITRE/Washington Cablenet system is based on a technology developed at MITRE/Bedford. Similar cable-bus systems are in operation at a number of government sites, e.g. Walter Reed Army Hospital, and the NASA Johnson Space Center, but these are all standalone, local-only networks.

The system uses standard community antenna television (CATV) coaxial cable and microprocessor based Bus Interface Units (BIUs) to connect subscriber computers and terminals to the cable. ... The cable bus consists of two parallel coaxial cables, one inbound and the other outbound. The inbound cable and outbound cable are connected at one end, the headend, and electrically terminated at their other ends. This architecture takes advantage of the well developed unidirectional CATV components. [2] The topology is dendritic (i.e. branched like a tree).
...

The BIUs contain Radio Frequency (RF) modems which modulate a carrier signal to transmit digital information using 1 MHz of the available bandwidth in the 24 MHz frequency range. The remainder of the 294 MHz bandwidth can be used to carry other communication channels, such as off-the-air TV, FM, closed circuit TV, or a voice telephone system, or, other digital channels. The data rate of our test-bed system is 307.2  kbps.

IEEE 802.3b (10BROAD36)

The IEEE 802 Committee defined 10BROAD36 in 802.3b-1985 [3] as a 10 Mbit/s IEEE 802.3/Ethernet broadband system to run up to 3,600 metres (11,800 ft) over CATV coax network cabling. The word broadband as used in the original IEEE 802.3 specifications implied operation in frequency-division multiplexed (FDM) channel bands as opposed to digital baseband square-waveform modulations (also known as line coding), which begin near zero Hz and theoretically consume infinite frequency bandwidth. (In real-world systems, higher-order signal components become indistinguishable from background noise.) In the market 10BROAD36 equipment was not developed by many vendors nor deployed in many user networks as compared to equipment for IEEE 802.3/Ethernet baseband standards such as 10BASE5 (1983), 10BASE2 (1985), 10BASE-T (1990), etc.

IEEE 802.7

The IEEE 802 Committee also specified a broadband CATV digital networking standard in 1989 with 802.7-1989. [4] However, like 10BROAD36, 802.7-1989 saw little commercial success.

Hybrid networks

Hybrid Networks developed, demonstrated and patented the first high-speed, asymmetrical cable modem system in 1990. A key Hybrid Networks insight was that in the nascent days of the Internet, data downloading constitutes the majority of the data traffic, and this can be served adequately with a highly asymmetrical data network (i.e. a large downstream data pipe and many small upstream data pipes). This allowed CATV operators to offer high-speed data services immediately without first requiring an expensive system upgrade. Also key was that it saw that the upstream and downstream communications could be on the same or different communications media using different protocols working in each direction to establish a closed-loop communications system. The speeds and protocols used in each direction would be very different. The earliest systems used the public switched telephone network (PSTN) for the return path since very few cable systems were bi-directional. Later systems used CATV for the upstream as well as the downstream path. Hybrid's system architecture is used for most cable modem systems today.

LANcity

LANcity was an early pioneer in cable modems, developing a proprietary system that was widely deployed in the U.S. LANcity, which was led by the Iranian-American engineer Rouzbeh Yassini, was then acquired by Bay Networks. [5] Bay Networks was subsequently acquired by Nortel. [6] Nortel at the time had formed a joint-venture with Antec called ARRIS Interactive. [7] Because of contractual agreements with Antec involving this joint venture, Nortel spun the LANCity group out into the ARRIS Interactive joint-venture. ARRIS continues to make cable modems and cable modem termination system (CMTS) equipment compliant with the DOCSIS standard.

Zenith homeworks

Zenith offered a cable modem technology using its own protocol which it introduced in 1993, being one of the first cable modem providers. The Zenith Cable Modem technology was used by several cable television systems in the United States and other countries, including Cox Communications San Diego, Knology in the Southeast United States, Ameritech's Americast service (later to be sold off to Wide Open West after the SBC / Ameritech merger), Cogeco in Hamilton Ontario and Cablevision du Nord de Québec in Val-d'Or. [8] Zenith Homeworks used BPSK (Bi-Phase Shift Keyed) modulation to achieve 500 Kbit/sec in 600 kHz, or 4 Mbit/sec in 6 MHz. [9]

Com21

Com21 was another early pioneer in cable modems, and quite successful until proprietary systems were made obsolete by the DOCSIS standardization. The Com21 system used a ComController as the central bridge in CATV network head-ends, the ComPort cable modem in various models and the NMAPS management system using HP OpenView as the platform. Later they also introduced a return path multiplexer to overcome noise problems when combining return path signals from multiple areas. The proprietary protocol was based on Asynchronous Transfer Mode (ATM). The central ComController switch was a modular system offering one downstream channel (transmitter) and one management module. The remaining slots could be used for upstream receivers (2 per card), dual Ethernet 10BaseT and later also Fast-Ethernet and ATM interfaces. The ATM interface became the most popular, as it supported the increasing bandwidth demands and also supported VLANs. Com21 developed a DOCSIS modem, but the company filed for bankruptcy in 2003 and closed. The DOCSIS CMTS assets of COM21 were acquired by ARRIS.

CDLP

CDLP was a proprietary system manufactured by Motorola. CDLP customer premises equipment (CPE) was capable of both PSTN (telephone network) and radio frequency (cable) return paths. The PSTN-based service was considered 'one-way cable' and had many of the same drawbacks as satellite Internet service; as a result, it quickly gave way to "two-way cable." Cable modems that used the RF cable network for the return path were considered 'two-way cable', and were better able to compete with the bi-directional digital subscriber line (DSL) service. The standard is in little use now as new providers use, and existing providers having changed to, the DOCSIS standard. The Motorola CDLP proprietary CyberSURFR is an example of a device that was built to the CDLP standard, capable of a peak 10  Mbit/s downstream and 1.532 Mbit/s upstream. CDLP supported a maximum downstream bandwidth of 30 Mbit/s which could be reached by using several cable modems.

The Australian ISP BigPond employed this system when it started cable modem tests in 1996. For a number of years cable Internet access was only available in Sydney, Melbourne and Brisbane via CDLP. This network ran parallel to the newer DOCSIS system for several years. In 2004, the CDLP network was terminated and replaced by DOCSIS.

CDLP has been also rolled out at the French cable operator Numericable before upgrading its IP broadband network using DOCSIS.

DVB/DAVIC

Digital Video Broadcasting (DVB) and Digital Audio Visual Council (DAVIC) are European-formed organizations that developed some cable modem standards. However, these standards have not been as widely adopted as DOCSIS.

IEEE 802.14

In the mid-1990s the IEEE 802 committee formed a subcommittee (802.14) [10] to develop a standard for cable modem systems. IEEE 802.14 developed a draft standard, which was ATM-based. However, the 802.14 working group was disbanded when North American multi system operators (MSOs) instead backed the then-fledgling DOCSIS 1.0 specification, which generally used best-effort service and was IP-based (with extension codepoints to support ATM [11] for QoS in the future). MSOs were interested in quickly deploying service to compete for broadband Internet access customers instead of waiting on the slower, iterative, and deliberative processes of standards development committees. Albert A. Azzam was Secretary of the IEEE 802.14 Working Group, [12] and his book, High-Speed Cable Modems, [13] describes many of the proposals submitted to 802.14.

IETF

Although the Internet Engineering Task Force (IETF) generally does not generate complete cable modem standards, the IETF chartered Working Groups (WGs) that produced various standards related to cable modem technologies (including 802.14, DOCSIS, PacketCable, and others). In particular, the IETF WGs on IP over Cable Data Network (IPCDN) [14] and IP over Digital Video Broadcasting (DVB) [15] produced some standards applicable to cable modem systems, primarily in the areas of Simple Network Management Protocol (SNMP) Management Information Bases (MIBs) for cable modems and other networking equipment that operates over CATV networks.

DOCSIS

In the late 1990s, a consortium of US cable operators, known as "MCNS" formed to quickly develop an open and interoperable cable modem specification. The group essentially combined technologies from the two dominant proprietary systems at the time, taking the physical layer from the Motorola CDLP system and the MAC layer from the LANcity system. When the initial specification had been drafted, the MCNS consortium handed over control of it to CableLabs which maintained the specification, promoted it in various standards organizations (notably SCTE and ITU), developed a certification testing program for cable modem equipment, and has since drafted multiple extensions to the original specification.

While deployed DOCSIS RFI 1.0 equipment generally only supported best-effort service, the DOCSIS RFI 1.0 Interim-01 document discussed quality of servce (QoS) extensions and mechanisms using IntServ, RSVP, RTP, and Synchronous Transfer Mode (STM) telephony (as opposed to ATM). [11] DOCSIS RFI 1.1 [16] later added more robust and standardized QoS mechanisms to DOCSIS. DOCSIS 2.0 added support for S-CDMA PHY, while DOCSIS 3.0 added IPv6 support and channel bonding to allow a single cable modem to use concurrently more than one upstream channel and more than one downstream channel in parallel.

Virtually all cable modems operating in the field today are compliant with one of the DOCSIS versions. Because of the differences in the European PAL and US's NTSC systems two main versions of DOCSIS exist, DOCSIS and EuroDOCSIS. The main differences are found in the width of RF-channels: 6 MHz for the US and 8 MHz for Europe. A third variant of DOCSIS was developed in Japan and has seen limited deployment in that country.

Although interoperability "was the whole point of the DOCSIS project," [17] most cable operators only approve a very restricted list of cable modems on their network, [18] [19] [20] [21] identifying the 'allowed' modems by their brand, models, sometimes firmware version and occasionally going as far as imposing a hardware version of the modem, instead of simply allowing a supported DOCSIS version.

Multimedia over Coax Alliance

In 2004, the Multimedia over Coax Alliance (MoCA) was established to develop industry standard for the connected home, using the existing coaxial cabling. Initially developed for in-home networking with MoCA 1.0/1.1, the MoCA standards has continued to develop with MoCA 2.0/2.1 in 2010 and MoCa 2.5 in 2016.

In 2017, Multimedia over Coax Alliance introduced MoCA Access specification, based on the MoCA 2.5 standard, suitable for addressing broadband network access in-building using coaxial cabling. [22] MoCA Access extends MoCA 2.5 in-home networking to fit operators and ISPs that are installing fiber-to-the-basement/drop point (FTTB/FTTdp) and want to use the existing coax for connection to each apartment or house."

Multimedia terminal adapter

With the development of voice over Internet Protocol (VoIP) telephony, analog telephone adapters (ATA) have been incorporated into many cable modems for providing telephone service. An embedded ATA is known as an embedded multimedia terminal adapter (E-MTA).

Many cable TV service providers also offer VoIP-based telephone service via the cable infrastructure (PacketCable). Some high-speed Internet customers may use VoIP telephony by subscribing to a third-party service, such as Vonage, MagicJack+ and NetTALK.

Network architectural functions

In network topology, a cable modem is a network bridge that conforms to IEEE 802.1D for Ethernet networking (with some modifications). The cable modem bridges Ethernet frames between a customer LAN and the coax network. Technically, it is a modem because it must modulate data to transmit it over the cable network, and it must demodulate data from the cable network to receive it.

It implements an Ethernet PHY on its LAN interface, and a DOCSIS-defined cable-specific PHY on its HFC cable interface. The term cable modem refers to this cable-specific PHY. The Network Layer is implemented as an IP host in that it has its own IP address used by the network operator to maintain the device. In the transport layer the cable modem supports UDP in association with its own IP address, and it supports filtering based on TCP and UDP port numbers to, for example, block forwarding of NetBIOS traffic out of the customer's LAN. In the Application Layer, the cable modem supports certain protocols that are used for management and maintenance, notably Dynamic Host Configuration Protocol (DHCP), SNMP, and TFTP.

Some cable modems may incorporate a router and a DHCP server to provide the LAN with IP network addressing. From a data forwarding and network topology perspective, this router functionality is typically kept distinct from the cable modem functionality (at least logically) even though the two may share a single enclosure and appear as one unit, sometimes called a residential gateway. So, the cable modem function will have its own IP address and MAC address as will the router.

Cable modem flap

Cable modems can have a problem known in industry jargon as "flap" or "flapping". [23] A modem flap is when the connection by the modem to the head-end has been dropped (gone offline) and then comes back online. The time offline or rate of flap is not typically recorded, only the incidence. While this is a common occurrence and usually unnoticed, if a modem's flap is extremely high, these disconnects can cause service to be disrupted. If there are usability problems due to flap the typical cause is a defective modem or very high amounts of traffic on the service provider's network (upstream utilization too high). [24] Types of flap include reinsertions, hits and misses, and power adjustments. [25]

Known vulnerabilities

In January 2020, a vulnerability affecting cable modems using Broadcom chipsets was disclosed and named Cable Haunt. Security researchers say that the vulnerability affects hundreds of millions of devices. Exploits are possible because of the use of default credentials in the spectrum analyzer component of the modem (mostly used for debugging purposes) accessible through a network port which is open by default in the vulnerable models. [26] [27]

See also

Related Research Articles

<span class="mw-page-title-main">Ethernet</span> Computer networking technology

Ethernet is a family of wired computer networking technologies commonly used in local area networks (LAN), metropolitan area networks (MAN) and wide area networks (WAN). It was commercially introduced in 1980 and first standardized in 1983 as IEEE 802.3. Ethernet has since been refined to support higher bit rates, a greater number of nodes, and longer link distances, but retains much backward compatibility. Over time, Ethernet has largely replaced competing wired LAN technologies such as Token Ring, FDDI and ARCNET.

<span class="mw-page-title-main">Broadband</span> Data transmission concept

In telecommunications, broadband or high speed is the wide-bandwidth data transmission that exploits signals at a wide spread of frequencies or several different simultaneous frequencies, and is used in fast Internet access. The transmission medium can be coaxial cable, optical fiber, wireless Internet (radio), twisted pair cable, or satellite.

The data link layer, or layer 2, is the second layer of the seven-layer OSI model of computer networking. This layer is the protocol layer that transfers data between nodes on a network segment across the physical layer. The data link layer provides the functional and procedural means to transfer data between network entities and may also provide the means to detect and possibly correct errors that can occur in the physical layer.

10BROAD36 is an obsolete computer network standard in the Ethernet family. It was developed during the 1980s and specified in IEEE 802.3b-1985. The Institute of Electrical and Electronics Engineers standards committee IEEE 802 published the standard that was ratified in 1985 as an additional section 11 to the base Ethernet standard. It was also issued as ISO/IEC 8802-3 in 1989.

Data Over Cable Service Interface Specification (DOCSIS) is an international telecommunications standard that permits the addition of high-bandwidth data transfer to an existing cable television (CATV) system. It is used by many cable television operators to provide cable Internet access over their existing hybrid fiber-coaxial (HFC) infrastructure.

The Point-to-Point Protocol over Ethernet (PPPoE) is a network protocol for encapsulating Point-to-Point Protocol (PPP) frames inside Ethernet frames. It appeared in 1999, in the context of the boom of DSL as the solution for tunneling packets over the DSL connection to the ISP's IP network, and from there to the rest of the Internet. A 2005 networking book noted that "Most DSL providers use PPPoE, which provides authentication, encryption, and compression." Typical use of PPPoE involves leveraging the PPP facilities for authenticating the user with a username and password, via the PAP protocol or via CHAP. PAP was dominant in 2007 but service providers have been transitioning to the more secure CHAP, because PAP is a plain-text protocol. Around 2000, PPPoE was also starting to become a replacement method for talking to a modem connected to a computer or router over an Ethernet LAN displacing the older method, which had been USB. This use-case, connecting routers to modems over Ethernet is still extremely common today.

<span class="mw-page-title-main">Rouzbeh Yassini</span> Inventor of Modem

Rouzbeh Yassini, known as the "Father of the Cable Modem", is an Iranian-American inventor, engineer, and author, who has gained international reputation as a "broadband visionary" for his pioneering work in broadband industry and inventing the cable modem, establishing the cable modem industry standards (DOCSIS) through Cable Television Laboratories (CableLabs), the Society of Cable Telecommunications Engineers (SCTE) and the International Telecommunication Union (ITU). He is executive director of the University Of New Hampshire Broadband Center Of Excellence and Founder and board member of the YAS Foundation. Yassini is the author of “Planet Broadband”, a humanized look at broadband technology and its contributions to the society, as well as “Broadband Intelligent Series”, a series of white papers on digital services. He is a worldwide speaker and is often interviewed and quoted in the press for his vision on the future of broadband. His lifetime vision and dream is that all the people in the world have ubiquitous access to the broadband and be connected all the time. He believes that broadband connectivity is a fundamental right for all the human beings, what he has referred to it frequently as "Broadband Equality". Yassini was founder, CEO, and president of LANcity, the early pioneer in cable modems. He has worked with Cable Television Laboratories, Inc. (CableLabs) a research arm of the cable television industry in charge of the DOCSIS and on CableHome projects as the cable industry's point man on standardizing the cable modem's global footprint. He served as a senior executive consultant to the cable industry's CEOs while being president and CEO of YAS Corporation. He also has worked with Comcast and Cablevision on numerous programs relating to innovation of broadband technologies. From 2004 to 2007, Yassini worked with the CTO's office at Comcast to create the first industry standard IP-Set top Box specification known as the RNG specification. He has been involved in managing and advising companies ranging from $100 million to $50 billion and served as member of the board of directors on BAS, TrueChat, and Entropic from 2001 to 2008, and UPC Technical Advisory Committee. He created and chaired the Vendor and Operator Executive Advisory Forum of the U.S. Cable Center. He was a member of the Liberty Global Inc. (LGI) advisory technology board from 2001 to 2017. Yassini was director of Visteon from January 2015 to December 2020. As CEO and Chairman of Irystec, a Montreal-based firm founded in 2015 specializing in perceptual display processing technology, Yassini was able to successfully have the french auto company Faurecia acquire the company in 2020, despite the Covid pandemic. Working for more than 30 years in the broadband industry and achieving major accomplishments, Yassini received many awards from different organizations. In 2024, he received Technology & Engineering Emmy® Award, from the National Academy of Television Arts & Sciences. In the same year, he was inducted to the Cable Hall of Fame. He also was inducted to the Light Reading Hall of Fame, in 2019. He was named multiple times as CED Broadband 50 designate. CED Magazine named him “1998 Man of the Year” for creating and fostering the multibillion-dollar cable modem broadband industry. The National Cable & Telecommunications Association (NCTA) awarded Yassini with a 2004 Vanguard Award, the Cable Industry's highest honor in recognition of his contributions and dedication to the industry. The Cable Television Pioneers also inducted Yassini into the class of 2012 for his tremendous and meaningful contributions to the cable industry. He is a member of the Lane Department Academy as well as West Virginia University Academy of Distinguished Alumni.

<span class="mw-page-title-main">IEEE 802.20</span> IEEE standard

IEEE 802.20 or Mobile Broadband Wireless Access (MBWA) was a specification by the standard association of the Institute of Electrical and Electronics Engineers (IEEE) for mobile broadband networks. The main standard was published in 2008. MBWA is no longer being actively developed.

Hybrid fiber-coaxial (HFC) is a broadband telecommunications network that combines optical fiber and coaxial cable. It has been commonly employed globally by cable television operators since the early 1990s.

<span class="mw-page-title-main">Cable modem termination system</span> Equipment used to provide high speed data services

A cable modem termination system is a piece of equipment, typically located in a cable company's headend or hubsite, which is used to provide data services, such as cable Internet or Voice over IP, to cable subscribers.

<span class="mw-page-title-main">Passive optical network</span> Technology used to provide broadband to the end consumer via fiber

A passive optical network (PON) is a fiber-optic telecommunications network that uses only unpowered devices to carry signals, as opposed to electronic equipment. In practice, PONs are typically used for the last mile between Internet service providers (ISP) and their customers. In this use, a PON has a point-to-multipoint topology in which an ISP uses a single device to serve many end-user sites using a system such as 10G-PON or GPON. In this one-to-many topology, a single fiber serving many sites branches into multiple fibers through a passive splitter, and those fibers can each serve multiple sites through further splitters. The light from the ISP is divided through the splitters to reach all the customer sites, and light from the customer sites is combined into the single fiber. Many fiber ISPs prefer this system.

<span class="mw-page-title-main">Link aggregation</span> Using multiple network connections in parallel to increase capacity and reliability

In computer networking, link aggregation is the combining of multiple network connections in parallel by any of several methods. Link aggregation increases total throughput beyond what a single connection could sustain, and provides redundancy where all but one of the physical links may fail without losing connectivity. A link aggregation group (LAG) is the combined collection of physical ports.

In telecommunications, cable Internet access, shortened to cable Internet, is a form of broadband internet access which uses the same infrastructure as cable television. Like digital subscriber line and fiber to the premises services, cable Internet access provides network edge connectivity from the Internet service provider to an end user. It is integrated into the cable television infrastructure analogously to DSL which uses the existing telephone network. Cable TV networks and telecommunications networks are the two predominant forms of residential Internet access. Recently, both have seen increased competition from fiber deployments, wireless, mobile networks and satellite internet access.

<span class="mw-page-title-main">Home network</span> Type of computer network

A home network or home area network (HAN) is a type of computer network that facilitates communication among devices within the close vicinity of a home. Devices capable of participating in this network, for example, smart devices such as network printers and handheld mobile computers, often gain enhanced emergent capabilities through their ability to interact. These additional capabilities can be used to increase the quality of life inside the home in a variety of ways, such as automation of repetitive tasks, increased personal productivity, enhanced home security, and easier access to entertainment.

<span class="mw-page-title-main">Computer network</span> Network that allows computers to share resources and communicate with each other

A computer network is a set of computers sharing resources located on or provided by network nodes. Computers use common communication protocols over digital interconnections to communicate with each other. These interconnections are made up of telecommunication network technologies based on physically wired, optical, and wireless radio-frequency methods that may be arranged in a variety of network topologies.

<span class="mw-page-title-main">Multimedia over Coax Alliance</span> International standards consortium that publishes specifications for networking over coaxial cable

The Multimedia over Coax Alliance (MoCA) is an international standards consortium that publishes specifications for networking over coaxial cable. The technology was originally developed to distribute IP television in homes using existing cabling, but is now used as a general-purpose Ethernet link where it is inconvenient or undesirable to replace existing coaxial cable with optical fiber or twisted pair cabling.

Ethernet over Coax (EoC) is a family of technologies that supports the transmission of Ethernet frames over coaxial cable. The Institute of Electrical and Electronics Engineers (IEEE) maintains all official Ethernet standards in the IEEE 802 family.

In telecommunications, radio frequency over glass (RFoG) is a deep-fiber network design in which the coax portion of the hybrid fiber coax (HFC) network is replaced by a single-fiber passive optical network (PON). Downstream and return-path transmission use different wavelengths to share the same fiber. The return-path wavelength standard is expected to be 1610 nm, but early deployments have used 1590 nm. Using 1590/1610 nm for the return path allows the fiber infrastructure to support both RFoG and a standards-based PON simultaneously, operating with 1490 nm downstream and 1310 nm return-path wavelengths.

Com21, Inc., was an early pioneer in developing cable modem networks in the era before the standard DOCSIS was introduced for Internet access via cable television networks. The company filed for bankruptcy in 2003.

Subisu Cablenet Ltd. is a Nepalese Internet Service Provider company located in Kathmandu, Nepal, and was established in 2001. Subisu employs over 1500 full-time employees, of which around 900 are technical and around 700 are non-technical. As of 2023, the company has over 235,000 customers. It has coverage in all 77 districts of Nepal. Subisu primarily provides cable and fiber internet and digital TV services through a hybrid fiber-coaxial (HFCC) network.

References

  1. IEN 96 - The MITRE Cablenet Project
  2. "RF Micro Devices, Inc. Whitepaper Describing Historical CATV Components" (PDF). Piedmontscte.org. Retrieved 2016-08-03. Amplifiers are one of the common components used in CATV system
  3. IEEE 802.3b-1985 (10BROAD36) Archived 2012-02-25 at the Wayback Machine - Supplement to 802.3: Broadband Medium Attachment Unit and Broadband Medium Specifications, Type 10BROAD36 (Section 11)
  4. "IEEE SA - 802.7-1989 - Local Area Networks: IEEE Recommended Practice: Broadband Local Area Networks". IEEE . 1990-03-09. Archived from the original on April 15, 2013. Retrieved 2016-08-03.
  5. staff, CNET News. "Bay Networks to acquire LANcity". CNET. Retrieved 2019-09-05.
  6. Marshall, Jonathan; Writer, Chronicle Staff (1998-06-16). "Telecom Giants To Merge / Bay Networks bought by Nortel for $7.2 billion". SFGate. Retrieved 2019-09-05.
  7. "Nortel ups stake in joint venture with Antec". CNET. Retrieved 2019-09-05.
  8. Sallie Hofmeister (1996-08-23). "Americast Places $1-Billion Order for Set-Top Boxes". Los Angeles Times . Retrieved 2010-08-28.
  9. Gilbert Held (2000). Network Design: Principles and Applications. Auerbach Publications. p. 765. ISBN   978-0-8493-0859-8.
  10. "WalkingDog.com". Archived from the original on 1996-12-26. Retrieved 2012-05-13.{{cite web}}: CS1 maint: bot: original URL status unknown (link) The IEEE 802.14 Working Group used WalkingDog.com as its web site.
  11. 1 2 DOCSIS RFI 1.0-I01 (March 26, 1997) Archived May 25, 2011, at the Wayback Machine (See section 6.2.3 for the DOCSIS ATM codepoint. See sections 6.1.2.3, 6.2.5.3, 6.4.7, 9, and 9.2.2 for DOCSIS 1.0 QoS mechanisms.)
  12. "IEEE 802.14 WG Officers". Archived from the original on 1997-01-29. Retrieved 2012-05-13.{{cite web}}: CS1 maint: bot: original URL status unknown (link)
  13. Azzam, Albert A. (1997). High speed cable modems : including IEEE 802.14 standards. New York, NY: New York : McGraw-Hill. ISBN   978-0-07-006417-1 . Retrieved 7 April 2024.
  14. "Ipcdn Status Pages". Tools.ietf.org. Retrieved 2016-08-03.
  15. "Ipdvb Status Pages". Tools.ietf.org. Retrieved 2016-08-03.
  16. DOCSIS RFI 1.1-I01 (March 11, 1999) (See section 8 and Appendix M.)
  17. "DOCSIS Modem Interoperability and Certification Overview" (PDF). Stuff.mit.edu. Retrieved 2016-08-03.
  18. "Cable". TekSavvy.com. Archived from the original on 2016-08-01. Retrieved 2016-08-03.
  19. "Compatible Modems". vmedia.ca. Retrieved 2021-10-27.
  20. "Unlimited Internet Plans Quebec | Cable, Fibre Optic | Acanac". Acanac.ca. Archived from the original on 2015-05-12. Retrieved 2016-08-03.
  21. "Fast Unlimited Download High Speed Cable 75 Internet Plus Home Phone Bundle". www.worldline.ca. Retrieved 2018-04-23.
  22. KMCreative. "MoCA Access™". www.mocalliance.org. Retrieved 2017-10-03.
  23. "Flap List Troubleshooting for the Cisco CMTS" (PDF). Cisco. Retrieved 26 July 2016.
  24. "Cable modem flapping.. - RCN | DSLReports Forums". Dslreports.com. Retrieved 2016-08-03.
  25. "CMTS Troubleshooting and Network Management Features Configuration Guide". Cisco.com. 2016-01-27. Retrieved 2016-08-03.
  26. "Hundreds of millions of cable modems are vulnerable to new Cable Haunt vulnerability". ZDNet.
  27. Goodin, Dan (2020-01-13). "Exploit that gives remote access affects ~200 million cable modems". Ars Technica. Retrieved 2020-01-15.

Further reading