Molecular communication

Last updated

Molecular communications systems use the presence or absence of a selected type of molecule to digitally encode messages. [1] The molecules are delivered into communications media such as air and water for transmission. The technique also is not subject to the requirement of using antennas that are sized to a specific ratio of the wavelength of the signal. Molecular communication signals can be made biocompatible and require very little energy [2] [3] .



Molecular signaling is used by plants and animals, such as the pheromones that insects use for long-range signaling. [2] [4]


Researchers demonstrated the use of evaporated alcohol molecules to carry messages across several meters of open space and successfully decoded the message on the other side. The presence of molecules encoded to digital 1 and their absence encoded to 0. The hardware cost around $100. [2]

Chemical systems

There is wireless network that uses chemical system as physical media for data transmission, instead of environment. The signals representing electronic message transmitted through the wireless communication channel of this wireless computer network are changings of the chemical system's chemical composition. [5]

Related Research Articles

Code method to represent information for various purposes (storage, transmission, protection against unauthorized access, ...)

In communications and information processing, code is a system of rules to convert information—such as a letter, word, sound, image, or gesture—into another form or representation, sometimes shortened or secret, for communication through a communication channel or storage in a storage medium. An early example is the invention of language, which enabled a person, through speech, to communicate what they saw, heard, felt, or thought to others. But speech limits the range of communication to the distance a voice can carry, and limits the audience to those present when the speech is uttered. The invention of writing, which converted spoken language into visual symbols, extended the range of communication across space and time.

Steganography is the practice of concealing a file, message, image, or video within another file, message, image, or video. The word steganography comes from New Latin steganographia, which combines the Greek words steganós (στεγανός), meaning "covered or concealed", and -graphia (γραφή) meaning "writing".

In general terms, throughput is the rate of production or the rate at which something is processed.

In telecommunication, a communications system or communication system is a collection of individual communications networks, transmission systems, relay stations, tributary stations, and data terminal equipment (DTE) usually capable of interconnection and interoperation to form an integrated whole. The components of a communications system serve a common purpose, are technically compatible, use common procedures, respond to controls, and operate in union.

Frequency-shift keying frequency modulation scheme

Frequency-shift keying (FSK) is a frequency modulation scheme in which digital information is transmitted through discrete frequency changes of a carrier signal. The technology is used for communication systems such as telemetry, weather balloon radiosondes, caller ID, garage door openers, and low frequency radio transmission in the VLF and ELF bands. The simplest FSK is binary FSK (BFSK). BFSK uses a pair of discrete frequencies to transmit binary information. With this scheme, the "1" is called the mark frequency and the "0" is called the space frequency.

Data transmission is the transfer of data over a point-to-point or point-to-multipoint communication channel. Examples of such channels are copper wires, optical fibers, wireless communication channels, storage media and computer buses. The data are represented as an electromagnetic signal, such as an electrical voltage, radiowave, microwave, or infrared signal.

In biology, quorum sensing is the ability to detect and to respond to cell population density by gene regulation. As one example, quorum sensing (QS) enables bacteria to restrict the expression of specific genes to the high cell densities at which the resulting phenotypes will be most beneficial. Many species of bacteria use quorum sensing to coordinate gene expression according to the density of their local population. In a similar fashion, some social insects use quorum sensing to determine where to nest. Also, quorum sensing might be useful for cancer cell communications too.

Wireless kind of telecommunication that does not require the use of physical wires; the transfer of information or power between two or more points that are not connected by an electrical conductor

Wireless communication — otherwise known as “over the air” —is the transfer of information or power between two or more points that are not connected by an electrical conductor. The most common wireless technologies use radio waves. With radio waves, intended distances can be short, such as a few meters for Bluetooth or as far as millions of kilometers for deep-space radio communications. It encompasses various types of fixed, mobile, and portable applications, including two-way radios, cellular telephones, personal digital assistants (PDAs), and wireless networking. Other examples of applications of radio wireless technology include GPS units, garage door openers, wireless computer mouse, keyboards and headsets, headphones, radio receivers, satellite television, broadcast television and cordless telephones. Somewhat less common methods of achieving wireless communications include the use of other electromagnetic wireless technologies, such as light, magnetic, or electric fields or the use of sound.

In telecommunications and computing, bit rate is the number of bits that are conveyed or processed per unit of time.

Gene regulatory network collection of molecular regulators

A generegulatory network (GRN) is a collection of molecular regulators that interact with each other and with other substances in the cell to govern the gene expression levels of mRNA and proteins. These play a central role in morphogenesis, the creation of body structures, which in turn is central to evolutionary developmental biology (evo-devo).

Military communications military operations and doctrine regarding communications

Military communications or military signals involve all aspects of communications, or conveyance of information, by armed forces. Military communications span from pre-history to the present. The earliest military communications were delivered by runners. Later, communications progressed to visual and audible signals, and then advanced into the electronic age. Examples from Jane's Military Communications include text, audio, facsimile, [[Military tactics|tactical ground-based communications, terrestrial microwave, tropospheric scatter, naval, satellite communications systems and equipment, surveillance and signal analysis, encryption and security and direction-finding and jamming.

Protein–protein interaction Physical interactions and constructions between multiple proteins

Protein–protein interactions (PPIs) are the physical contacts of high specificity established between two or more protein molecules as a result of biochemical events steered by interactions that include electrostatic forces, hydrogen bonding and the hydrophobic effect. Many are physical contacts with molecular associations between chains that occur in a cell or in a living organism in a specific biomolecular context.


Neurotransmission is the process by which signaling molecules called neurotransmitters are released by the axon terminal of a neuron, and bind to and react with the receptors on the dendrites of another neuron a short distance away. A similar process occurs in retrograde neurotransmission, where the dendrites of the postsynaptic neuron release retrograde neurotransmitters that signal through receptors that are located on the axon terminal of the presynaptic neuron, mainly at GABAergic and glutamatergic synapses.

OR1G1 protein-coding gene in the species Homo sapiens

Olfactory receptor 1G1 is a protein that in humans is encoded by the OR1G1 gene.

OR5P3 protein-coding gene in the species Homo sapiens

Olfactory receptor 5P3 is a protein that in humans is encoded by the OR5P3 gene.

Tetherin mammalian protein found in Homo sapiens

Tetherin, also known as bone marrow stromal antigen 2, is a lipid raft associated protein that in humans is encoded by the BST2 gene. In addition, tetherin has been designated as CD317. This protein is constitutively expressed in mature B cells, plasma cells and plasmacytoid dendritic cells, and in many other cells, it is only expressed as a response to stimuli from IFN pathway.

Nanonetwork A computing network of nanomachines, at nanoscale

A nanonetwork or nanoscale network is a set of interconnected nanomachines, which are able to perform only very simple tasks such as computing, data storing, sensing and actuation. Nanonetworks are expected to expand the capabilities of single nanomachines both in terms of complexity and range of operation by allowing them to coordinate, share and fuse information. Nanonetworks enable new applications of nanotechnology in the biomedical field, environmental research, military technology and industrial and consumer goods applications. Nanoscale communication is defined in IEEE P1906.1.

Telecommunication Transmission of information between locations using electromagnetics

Telecommunication is the exchange of signs, signals, messages, words, writings, images and sounds or information of any nature by wire, radio, optical or other electromagnetic systems. Telecommunication occurs when the exchange of information between communication participants includes the use of technology. It is transmitted through a transmission medium, such as over physical media, for example, over electrical cable, or via electromagnetic radiation through space such as radio or light. Such transmission paths are often divided into communication channels which afford the advantages of multiplexing. Since the Latin term communicatio is considered the social process of information exchange, the term telecommunications is often used in its plural form because it involves many different technologies.

intrinsic Noise Analyzer (iNA) is an open source software for studying reaction kinetics in living cells. The software analyzes mathematical models of intracellular reaction kinetics such as gene expression, regulatory networks or signaling pathways to quantify concentration fluctuations due to the random nature of chemical reactions.

Ganesh Bagler Indian biologist

Ganesh Bagler is known for his research in Computational Gastronomy, an emerging data science of food, flavors and health. By blending food with data and computation he has helped establish the foundations of this niche area. Starting with the investigation of food pairing in the Indian cuisine, his lab has contributed to computational gastronomy with studies on culinary fingerprints of world cuisines, culinary evolution, benevolent health impacts of spices, and taste prediction algorithms.


  1. T. Nakano, A. Eckford, and T. Haraguchi (2013). Molecular Communication. Cambridge University Press. ISBN   978-1107023086.CS1 maint: multiple names: authors list (link)
  2. 1 2 3 "Text message using vodka: Molecular communication can aid communication underground, underwater or Inside the Body". Retrieved 18 October 2016.
  3. Farsad, N.; Guo, W.; Eckford, A. W. (2013). Willson, Richard C (ed.). "Tabletop Molecular Communication: Text Messages through Chemical Signals". PLoS ONE. 8 (12): e82935. doi:10.1371/journal.pone.0082935. PMC   3867433 . PMID   24367571.
  4. Habibi, Iman; Emamian, Effat S.; Abdi, Ali (2014-10-07). "Advanced Fault Diagnosis Methods in Molecular Networks". PLOS ONE. 9 (10): e108830. doi:10.1371/journal.pone.0108830. ISSN   1932-6203. PMC   4188586 . PMID   25290670.