Transmission medium

Last updated

A transmission medium is something that can mediate the propagation of signals for the purposes of telecommunication.

Wave propagation is any of the ways in which waves travel.

Signal varying physical quantity that conveys information

In signal processing, a signal is a function that conveys information about a phenomenon. In electronics and telecommunications, it refers to any time varying voltage, current or electromagnetic wave that carries information. A signal may also be defined as an observable change in a quantity.

Telecommunication Transmission of information between locations using electromagnetics

Telecommunication is the transmission of signs, signals, messages, words, writings, images and sounds or information of any nature by wire, radio, optical or other electromagnetic systems. Telecommunication occurs when the exchange of information between communication participants includes the use of technology. It is transmitted through a transmission media, such as over physical media, for example, over electrical cable, or via electromagnetic radiation through space such as radio or light. Such transmission paths are often divided into communication channels which afford the advantages of multiplexing. Since the Latin term communicatio is considered the social process of information exchange, the term telecommunications is often used in its plural form because it involves many different technologies.

Contents

Signals are typically imposed on a wave of some kind suitable for the chosen medium. For example, data can modulate sound and a transmission medium for sounds may be air, but solids and liquids may also act as the transmission medium. Vacuum or air constitutes a good transmission medium for electromagnetic waves such as light and radio waves. While material substance is not required for electromagnetic waves to propagate, such waves are usually affected by the transmission media they pass through, for instance by absorption or by reflection or refraction at the interfaces between media. Technical devices can therefore be employed to transmit or guide waves. Thus, an optical fiber or a copper cable are used as transmission media.

Sound mechanical wave that is an oscillation of pressure transmitted through a solid, liquid, or gas, composed of frequencies within the range of hearing; pressure wave, generated by vibrating structure

In physics, sound is a vibration that typically propagates as an audible wave of pressure, through a transmission medium such as a gas, liquid or solid.

Vacuum Space that is empty of matter

Vacuum is space devoid of matter. The word stems from the Latin adjective vacuus for "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often discuss ideal test results that would occur in a perfect vacuum, which they sometimes simply call "vacuum" or free space, and use the term partial vacuum to refer to an actual imperfect vacuum as one might have in a laboratory or in space. In engineering and applied physics on the other hand, vacuum refers to any space in which the pressure is lower than atmospheric pressure. The Latin term in vacuo is used to describe an object that is surrounded by a vacuum.

Light electromagnetic radiation in or near visible spectrum

Light is electromagnetic radiation within a certain portion of the electromagnetic spectrum. The word usually refers to visible light, which is the visible spectrum that is visible to the human eye and is responsible for the sense of sight. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), or 4.00 × 10−7 to 7.00 × 10−7 m, between the infrared and the ultraviolet. This wavelength means a frequency range of roughly 430–750 terahertz (THz).

Coaxial cable, one example of a transmission medium RG-59.jpg
Coaxial cable, one example of a transmission medium

Electromagnetic radiation can be transmitted through an optical medium, such as optical fiber, or through twisted pair wires, coaxial cable, or dielectric-slab waveguides. It may also pass through any physical material that is transparent to the specific wavelength, such as water, air, glass, or concrete. Sound is, by definition, the vibration of matter, so it requires a physical medium for transmission, as do other kinds of mechanical waves and heat energy. Historically, science incorporated various aether theories to explain the transmission medium. However, it is now known that electromagnetic waves do not require a physical transmission medium, and so can travel through the "vacuum" of free space. Regions of the insulative vacuum can become conductive for electrical conduction through the presence of free electrons, holes, or ions.

Electromagnetic radiation form of energy emitted and absorbed by charged particles, which exhibits wave-like behavior as it travels through space

In physics, electromagnetic radiation refers to the waves of the electromagnetic field, propagating (radiating) through space, carrying electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible) light, ultraviolet, X-rays, and gamma rays.

An optical medium is material through which electromagnetic waves propagate. It is a form of transmission medium. The permittivity and permeability of the medium define how electromagnetic waves propagate in it. The medium has an intrinsic impedance, given by

Optical fiber light-conducting fiber

An optical fiber is a flexible, transparent fiber made by drawing glass (silica) or plastic to a diameter slightly thicker than that of a human hair. Optical fibers are used most often as a means to transmit light between the two ends of the fiber and find wide usage in fiber-optic communications, where they permit transmission over longer distances and at higher bandwidths than electrical cables. Fibers are used instead of metal wires because signals travel along them with less loss; in addition, fibers are immune to electromagnetic interference, a problem from which metal wires suffer excessively. Fibers are also used for illumination and imaging, and are often wrapped in bundles so they may be used to carry light into, or images out of confined spaces, as in the case of a fiberscope. Specially designed fibers are also used for a variety of other applications, some of them being fiber optic sensors and fiber lasers.

Telecommunications

A physical medium in data communications is the transmission path over which a signal propagates. Many different types of transmission media are used as communications channel.

In many forms of communications, communication is in the form of electromagnetic waves. With guided transmission media, the waves are guided along a physical path; examples of guided media include phone lines, twisted pair cables, coaxial cables, and optical fibers. Unguided transmission media are methods that allow the transmission of data without the use of physical means to define the path it takes. Examples of this include microwave, radio or infrared. Unguided media provide a means for transmitting electromagnetic waves but do not guide them; examples are propagation through air, vacuum and seawater.

Twisted pair wiring in which two conductors of a circuit are twisted together to improve electromagnetic compatibility

Twisted pair cabling is a type of wiring in which two conductors of a single circuit are twisted together for the purposes of improving electromagnetic compatibility. Compared to a single conductor or an untwisted balanced pair, a twisted pair reduces electromagnetic radiation from the pair and crosstalk between neighboring pairs and improves rejection of external electromagnetic interference. It was invented by Alexander Graham Bell.

Coaxial cable A type of electrical cable with an inner conductor surrounded by concentric insulating layer and conducting shield

Coaxial cable, or coax is a type of electrical cable that has an inner conductor surrounded by a tubular insulating layer, surrounded by a tubular conducting shield. Many coaxial cables also have an insulating outer sheath or jacket. The term coaxial comes from the inner conductor and the outer shield sharing a geometric axis. Coaxial cable was invented by English physicist, engineer, and mathematician Oliver Heaviside, who patented the design in 1880.

Data facts represented for handling

Data is a set of values of subjects with respect to qualitative or quantitative variables.

The term direct link is used to refer to the transmission path between two devices in which signals propagate directly from transmitters to receivers with no intermediate devices, other than amplifiers or repeaters used to increase signal strength. This term can apply to both guided and unguided media.

Simplex versus duplex

A transmission may be simplex, half-duplex, or full-duplex.

Simplex communication communication channel that sends information in one direction only

Simplex communication is a communication channel that sends information in one direction only.

A duplex communication system is a point-to-point system composed of two or more connected parties or devices that can communicate with one another in both directions. Duplex systems are employed in many communications networks, either to allow for simultaneous communication in both directions between two connected parties or to provide a reverse path for the monitoring and remote adjustment of equipment in the field. There are two types of duplex communication systems: full-duplex (FDX) and half-duplex (HDX).

In simplex transmission, signals are transmitted in only one direction; one station is a transmitter and the other is the receiver. In the half-duplex operation, both stations may transmit, but only one at a time. In full duplex operation, both stations may transmit simultaneously. In the latter case, the medium is carrying signals in both directions at same time.

Types

In general, a transmission medium can be classified as a:

There are two main types of transmission media: guided and unguided.

For telecommunications purposes in the United States, Federal Standard 1037C, transmission media are classified as one of the following:

One of the most common physical medias used in networking is copper wire. Copper wire to carry signals to long distances using relatively low amounts of power. The unshielded twisted pair (UTP) is eight strands of copper wire, organized into four pairs. [1]

Guided

Twisted pair

Twisted pair cabling is a type of wiring in which two conductors of a single circuit are twisted together for the purposes of improving electromagnetic compatibility. Compared to a single conductor or an untwisted balanced pair, a twisted pair reduces electromagnetic radiation from the pair and crosstalk between neighboring pairs and improves rejection of external electromagnetic interference. It was invented by Alexander Graham Bell. [2]

Coaxial cable

RG-59 flexible coaxial cable composed of:
Outer plastic sheath
Woven copper shield
Inner dielectric insulator
Copper core RG-59.jpg
RG-59 flexible coaxial cable composed of:
  1. Outer plastic sheath
  2. Woven copper shield
  3. Inner dielectric insulator
  4. Copper core
Cross-sectional view of a coaxial cable Coaxial cable.JPG
Cross-sectional view of a coaxial cable

Coaxial cable, or coax (pronounced /ˈk.æks/ ) is a type of electrical cable that has an inner conductor surrounded by a tubular insulating layer, surrounded by a tubular conducting shield. Many coaxial cables also have an insulating outer sheath or jacket. The term coaxial comes from the inner conductor and the outer shield sharing a geometric axis. Coaxial cable was invented by English physicist, engineer, and mathematician Oliver Heaviside, who patented the design in 1880. [3]

Coaxial cable is a type of transmission line, used to carry high frequency electrical signals with low losses. It is used in such applications as telephone trunklines, broadband internet networking cables, high speed computer data busses, carrying cable television signals, and connecting radio transmitters and receivers to their antennas. It differs from other shielded cables because the dimensions of the cable and connectors are controlled to give a precise, constant conductor spacing, which is needed for it to function efficiently as a transmission line.

Oliver Heaviside invented coaxial cable in 1880 Oheaviside.jpg
Oliver Heaviside invented coaxial cable in 1880

Optical fiber

A bundle of optical fiber Fibreoptic.jpg
A bundle of optical fiber
Fiber crew installing a 432-count fiber cable underneath the streets of Midtown Manhattan, New York City Stealth Fiber Crew installing fiber cable underneath the streets of Manhattan.jpg
Fiber crew installing a 432-count fiber cable underneath the streets of Midtown Manhattan, New York City
A TOSLINK fiber optic audio cable with red light being shone in one end transmits the light to the other end Fiber optic illuminated.jpg
A TOSLINK fiber optic audio cable with red light being shone in one end transmits the light to the other end
A wall-mount cabinet containing optical fiber interconnects. The yellow cables are single mode fibers; the orange and aqua cables are multi-mode fibers: 50/125 um OM2 and 50/125 um OM3 fibers respectively. Optical-fibre-junction-box.jpg
A wall-mount cabinet containing optical fiber interconnects. The yellow cables are single mode fibers; the orange and aqua cables are multi-mode fibers: 50/125 µm OM2 and 50/125 µm OM3 fibers respectively.

Another example of a physical medium is optical fiber, which has emerged as the most commonly used transmission medium for long-distance communications. Optical fiber is a thin strand of glass that guides light along its length. Four major factors favor optical fiber over copper- data rates, distance, installation, and costs. Optical fiber can carry huge amounts of data compared to copper. It can be run for hundreds of miles without the need for signal repeaters, in turn, reducing maintenance costs and improving the reliability of the communication system because repeaters are a common source of network failures. Glass is lighter than copper allowing for less need for specialized heavy-lifting equipment when installing long-distance optical fiber. Optical fiber for indoor applications cost approximately a dollar a foot, the same as copper. [4]

Multimode and single mode are two types of commonly used optical fiber. Multimode fiber uses LEDs as the light source and can carry signals over shorter distances, about 2 kilometers. Single mode can carry signals over distances of tens of miles.

An optical fiber is a flexible, transparent fiber made by drawing glass (silica) or plastic to a diameter slightly thicker than that of a human hair. [5] Optical fibers are used most often as a means to transmit light between the two ends of the fiber and find wide usage in fiber-optic communications, where they permit transmission over longer distances and at higher bandwidths (data rates) than electrical cables. Fibers are used instead of metal wires because signals travel along them with less loss; in addition, fibers are immune to electromagnetic interference, a problem from which metal wires suffer excessively. [6] Fibers are also used for illumination and imaging, and are often wrapped in bundles so they may be used to carry light into, or images out of confined spaces, as in the case of a fiberscope. [7] Specially designed fibers are also used for a variety of other applications, some of them being fiber optic sensors and fiber lasers. [8]

Optical fibers typically include a core surrounded by a transparent cladding material with a lower index of refraction. Light is kept in the core by the phenomenon of total internal reflection which causes the fiber to act as a waveguide. [9] Fibers that support many propagation paths or transverse modes are called multi-mode fibers, while those that support a single mode are called single-mode fibers (SMF). Multi-mode fibers generally have a wider core diameter [10] and are used for short-distance communication links and for applications where high power must be transmitted.[ citation needed ] Single-mode fibers are used for most communication links longer than 1,000 meters (3,300 ft).[ citation needed ]

Being able to join optical fibers with low loss is important in fiber optic communication. [11] This is more complex than joining electrical wire or cable and involves careful cleaving of the fibers, precise alignment of the fiber cores, and the coupling of these aligned cores. For applications that demand a permanent connection a fusion splice is common. In this technique, an electric arc is used to melt the ends of the fibers together. Another common technique is a mechanical splice, where the ends of the fibers are held in contact by mechanical force. Temporary or semi-permanent connections are made by means of specialized optical fiber connectors. [12]

The field of applied science and engineering concerned with the design and application of optical fibers is known as fiber optics. The term was coined by Indian physicist Narinder Singh Kapany, who is widely acknowledged as the father of fiber optics. [13]

Unguided Media

Transmission media then looking at analysis of using them unguided transmission media is data signals that flow through the air. They are not guided or bound to a channel to follow. Following are unguided media used for data communication:

Radio

Radio propagation is the behavior of radio waves as they travel, or are propagated, from one point to another, or into various parts of the atmosphere. [14] As a form of electromagnetic radiation, like light waves, radio waves are affected by the phenomena of reflection, refraction, diffraction, absorption, polarization, and scattering. [15] Understanding the effects of varying conditions on radio propagation has many practical applications, from choosing frequencies for international shortwave broadcasters, to designing reliable mobile telephone systems, to radio navigation, to operation of radar systems.

Several all different types of propagation are used in practical radio transmission systems. Line-of-sight propagation means radio waves which travel in a straight line from the transmitting antenna to the receiving antenna. Line of sight transmission is used to medium range radio transmission such as cell phones, cordless phones, walkie-talkies, wireless networks, FM radio and television broadcasting and radar, and satellite communication, such as satellite television. Line-of-sight transmission on the surface of the Earth is limited to the distance to the visual horizon, which depends on the height of transmitting and receiving antennas. It is the only propagation method possible at microwave frequencies and above. At microwave frequencies, moisture in the atmosphere (rain fade) can degrade transmission.

At lower frequencies in the MF, LF, and VLF bands, due to diffraction radio waves can bend over obstacles like hills, and travel beyond the horizon as surface waves which follow the contour of the Earth. These are called ground waves. AM broadcasting stations use ground waves to cover their listening areas. As the frequency gets lower, the attenuation with distance decreases, so very low frequency (VLF) and extremely low frequency (ELF) ground waves can be used to communicate worldwide. VLF and ELF waves can penetrate significant distances through water and earth, and these frequencies are used for mine communication and military communication with submerged submarines.

At medium wave and shortwave frequencies (MF and HF bands) radio waves can refract from a layer of charged particles (ions) high in the atmosphere, called the ionosphere. This means that radio waves transmitted at an angle into the sky can be reflected back to Earth beyond the horizon, at great distances, even transcontinental distances. This is called skywave propagation. It is used by amateur radio operators to talk to other countries, and shortwave broadcasting stations that broadcast internationally. Skywave communication is variable, dependent on conditions in the upper atmosphere; it is most reliable at night and in the winter. Due to its unreliability, since the advent of communication satellites in the 1960s, many long range communication needs that previously used skywaves now use satellites.

In addition, there are several less common radio propagation mechanisms, such as tropospheric scattering (troposcatter) and near vertical incidence skywave (NVIS) which are used in specialized communication systems.


Digital encoding

Transmission and reception of data typically is performed in four steps.

  1. The data is coded as binary numbers at the sender end
  2. A carrier signal is modulated as specified by the binary representation of the data
  3. At the receiving end, the incoming signal is demodulated into the respective binary numbers
  4. Decoding of the binary numbers is performed [16]

See also

Related Research Articles

In physics, attenuation or, in some contexts, extinction is the gradual loss of flux intensity through a medium. For instance, dark glasses attenuate sunlight, lead attenuates X-rays, and water and air attenuate both light and sound at variable attenuation rates.

In telecommunication, a communications system or communication system is a collection of individual communications networks, transmission systems, relay stations, tributary stations, and data terminal equipment (DTE) usually capable of interconnection and interoperation to form an integrated whole. The components of a communications system serve a common purpose, are technically compatible, use common procedures, respond to controls, and operate in union.

Network topology arrangement of the various elements of a computer network; topological structure of a network and may be depicted physically or logically

Network topology is the arrangement of the elements of a communication network. Network topology can be used to define or describe the arrangement of various types of telecommunication networks, including command and control radio networks, industrial fieldbusses and computer networks.

Surface wave mechanical wave that propagates along the interface between differing media

In physics, a surface wave is a 90 degree wave that propagates along the interface between differing media. A common example is gravity waves along the surface of liquids, such as ocean waves. Gravity waves can also occur within liquids, at the interface between two fluids with different densities. Elastic surface waves can travel along the surface of solids, such as Rayleigh or Love waves. Electromagnetic waves can also propagate as "surface waves" in that they can be guided along a refractive index gradient or along an interface between two media having different dielectric constants. In radio transmission, a ground wave is a guided wave that propagates close to the surface of the Earth.

Transmission line specialized cable or other structure designed to carry alternating current of radio frequency

In radio-frequency engineering, a transmission line is a specialized cable or other structure designed to conduct alternating current of radio frequency, that is, currents with a frequency high enough that their wave nature must be taken into account. Transmission lines are used for purposes such as connecting radio transmitters and receivers with their antennas, distributing cable television signals, trunklines routing calls between telephone switching centres, computer network connections and high speed computer data buses.

Waveguide structure that guides waves, typically electromagnetic waves

A waveguide is a structure that guides waves, such as electromagnetic waves or sound, with minimal loss of energy by restricting expansion to one dimension or two. There is a similar effect in water waves constrained within a canal, or guns that have barrels which restrict hot gas expansion to maximize energy transfer to their bullets. Without the physical constraint of a waveguide, wave amplitudes decrease according to the inverse square law as they expand into three dimensional space.

Data transmission is the transfer of data over a point-to-point or point-to-multipoint communication channel. Examples of such channels are copper wires, optical fibers, wireless communication channels, storage media and computer buses. The data are represented as an electromagnetic signal, such as an electrical voltage, radiowave, microwave, or infrared signal.

Shortwave radio radio frequencies in the range of 1.6-30 megahertz (ITU region 1) or 1.7-30 megahertz (ITU region 2)

Shortwave radio is radio transmission using shortwave radio frequencies. There is no official definition of the band, but the range always includes all of the high frequency band (HF), and generally extends from 3–30 MHz ; above the medium frequency band (MF), to the end of the HF band.

Frequency-division multiplexing multiplexing dividing a comm medium into non-overlapping frequency bands, each carrying a separate signal

In telecommunications, frequency-division multiplexing (FDM) is a technique by which the total bandwidth available in a communication medium is divided into a series of non-overlapping frequency bands, each of which is used to carry a separate signal. This allows a single transmission medium such as a cable or optical fiber to be shared by multiple independent signals. Another use is to carry separate serial bits or segments of a higher rate signal in parallel.

Communication channel physical transmission medium such as a wire, or logical connection

A communication channel or simply channel refers either to a physical transmission medium such as a wire, or to a logical connection over a multiplexed medium such as a radio channel in telecommunications and computer networking. A channel is used to convey an information signal, for example a digital bit stream, from one or several senders to one or several receivers. A channel has a certain capacity for transmitting information, often measured by its bandwidth in Hz or its data rate in bits per second.

Medium frequency The range 300-3000 kHz of the electromagnetic spectrum

Medium frequency (MF) is the ITU designation for radio frequencies (RF) in the range of 300 kilohertz (kHz) to 3 megahertz (MHz). Part of this band is the medium wave (MW) AM broadcast band. The MF band is also known as the hectometer band as the wavelengths range from ten to one hectometer. Frequencies immediately below MF are denoted low frequency (LF), while the first band of higher frequencies is known as high frequency (HF). MF is mostly used for AM radio broadcasting, navigational radio beacons, maritime ship-to-shore communication, and transoceanic air traffic control.

Radio propagation behavior of radio waves as they travel, or are propagated, from one point to another, or into various parts of the atmosphere

Radio propagation is the behavior of radio waves as they travel, or are propagated, from one point to another, or into various parts of the atmosphere. As a form of electromagnetic radiation, like light waves, radio waves are affected by the phenomena of reflection, refraction, diffraction, absorption, polarization, and scattering. Understanding the effects of varying conditions on radio propagation has many practical applications, from choosing frequencies for international shortwave broadcasters, to designing reliable mobile telephone systems, to radio navigation, to operation of radar systems.

Skywave propagation of radio waves via the ionosphere

In radio communication, skywave or skip refers to the propagation of radio waves reflected or refracted back toward Earth from the ionosphere, an electrically charged layer of the upper atmosphere. Since it is not limited by the curvature of the Earth, skywave propagation can be used to communicate beyond the horizon, at intercontinental distances. It is mostly used in the shortwave frequency bands.

Optical networking is a means of communication that uses signals encoded onto light to transmit information among various nodes of a telecommunications network. They operate from the limited range of a local-area network (LAN) or over a wide-area network (WAN), which can cross metropolitan and regional areas all the way to national, international and transoceanic distances. It is a form of optical communication that relies on optical amplifiers, lasers or LEDs and wave division multiplexing (WDM) to transmit large quantities of data, generally across fiber-optic cables. Because it is capable of achieving extremely high bandwidth, it is an enabling technology for today’s Internet and the communication networks that transmit the vast majority of all human and machine-to-machine information.

Fiber-optic communication Method of transmitting information from one place to another by sending pulses of light through an optical fiber

Fiber-optic communication is a method of transmitting information from one place to another by sending pulses of light through an optical fiber. The light forms an electromagnetic carrier wave that is modulated to carry information. Fiber is preferred over electrical cabling when high bandwidth, long distance, or immunity to electromagnetic interference are required.

Networking cables are networking hardware used to connect one network device to other network devices or to connect two or more computers to share printers, scanners etc. Different types of network cables, such as coaxial cable, optical fiber cable, and twisted pair cables, are used depending on the network's physical layer, topology, and size. The devices can be separated by a few meters or nearly unlimited distances.

Polarization-division multiplexing

Polarization-division multiplexing (PDM) is a physical layer method for multiplexing signals carried on electromagnetic waves, allowing two channels of information to be transmitted on the same carrier frequency by using waves of two orthogonal polarization states. It is used in microwave links such as satellite television downlinks to double the bandwidth by using two orthogonally polarized feed antennas in satellite dishes. It is also used in fiber optic communication by transmitting separate left and right circularly polarized light beams through the same optical fiber.

Physical media refers to the physical materials that are used to store or transmit information in data communications. These physical media are generally physical objects made of materials such as copper or glass. They can be touched and felt, and have physical properties such as weight and color. For a number of years, copper and glass were the only media used in computer networking.

References

  1. Agrawal, Manish (2010). Business Data Communications. John Wiley & Sons, Inc. p. 37. ISBN   0470483369.
  2. McBee, David Barnett, David Groth, Jim (2004). Cabling : the complete guide to network wiring (3rd ed.). San Francisco: SYBEX. p. 11. ISBN   9780782143317.
  3. Nahin, Paul J. (2002). Oliver Heaviside: The Life, Work, and Times of an Electrical Genius of the Victorian Age. ISBN   0-8018-6909-9.
  4. Agrawal, Manish (2010). Business Data Communications. John Wiley & Sons, Inc. pp. 41–43. ISBN   0470483369.
  5. "Optical Fiber". www.thefoa.org. The Fiber Optic Association . Retrieved 17 April 2015.
  6. Senior, John M.; Jamro, M. Yousif (2009). Optical fiber communications: principles and practice. Pearson Education. pp. 7–9. ISBN   978-0130326812.
  7. "Birth of Fiberscopes". www.olympus-global.com. Olympus Corporation. Retrieved 17 April 2015.
  8. Lee, Byoungho (2003). "Review of the present status of optical fiber sensors". Optical Fiber Technology. 9 (2): 57–79. Bibcode:2003OptFT...9...57L. doi:10.1016/s1068-5200(02)00527-8.
  9. Senior, pp. 12–14
  10. The Optical Industry & Systems Purchasing Directory. Optical Publishing Company. 1984.
  11. Senior, p. 218
  12. Senior, pp. 234–235
  13. "Narinder Singh Kapany Chair in Opto-electronics". ucsc.edu.
  14. H. P. Westman et al., (ed), Reference Data for Radio Engineers, Fifth Edition, 1968, Howard W. Sams and Co., ISBN   0-672-20678-1, Library of Congress Card No. 43-14665 page 26-1
  15. Demetrius T Paris and F. Kenneth Hurd, Basic Electromagnetic Theory, McGraw Hill, New York 1969 ISBN   0-07-048470-8, Chapter 8
  16. Agrawal, Manish (2010). Business Data Communications. John Wiley & Sons, Inc. p. 54. ISBN   0470483369.