Drawing (manufacturing)

Last updated
Diagram of bar drawing; the workpiece is pulled from left (tension) rather than pushed from the right (compression). Bar drawing.svg
Diagram of bar drawing; the workpiece is pulled from left (tension) rather than pushed from the right (compression).

Drawing is a manufacturing process that uses tensile forces to elongate metal, glass, or plastic. As the material is drawn (pulled), it stretches and becomes thinner, achieving a desired shape and thickness. Drawing is classified into two types: sheet metal drawing and wire, bar, and tube drawing. Sheet metal drawing is defined as a plastic deformation over a curved axis. For wire, bar, and tube drawing, the starting stock is drawn through a die to reduce its diameter and increase its length. Drawing is usually performed at room temperature, thus classified as a cold working process; however, drawing may also be performed at higher temperatures to hot work large wires, rods, or hollow tubes in order to reduce forces. [1] [2]

Contents

Drawing differs from rolling in that pressure is not applied by the turning action of a mill but instead depends on force applied locally near the area of compression. This means the maximal drawing force is limited by the tensile strength of the material, a fact particularly evident when drawing thin wires. [3]

The starting point of cold drawing is hot-rolled stock of a suitable size.

Metal

Successful drawing depends on the flow and stretch of the material. Steels, copper alloys, and aluminium alloys are commonly drawn metals. [4]

In sheet metal drawing, as a die forms a shape from a flat sheet of metal (the "blank"), the material is forced to move and conform to the die. The flow of material is controlled through pressure applied to the blank and lubrication applied to the die or the blank. If the form moves too easily, wrinkles will occur in the part. To correct this, more pressure or less lubrication is applied to the blank to limit the flow of material and cause the material to stretch or set thin. If too much pressure is applied, the part will become too thin and break. Drawing metal requires finding the correct balance between wrinkles and breaking to achieve a successful part.

Sheet metal drawing becomes deep drawing when the workpiece is longer than its diameter. It is common that the workpiece is also processed using other forming processes, such as piercing, ironing, necking, rolling, and beading. In shallow drawing, the depth of drawing is less than the smallest dimension of the hole.

Bar, tube, and wire drawing all work upon the same principle: the starting stock is drawn through a die to reduce its diameter and increase its length. Usually, the die is mounted on a draw bench. The starting end of the workpiece is narrowed or pointed to get the end through the die. The end is then placed in grips which pull the rest of the workpiece through the die. [1]

Drawing can also be used to cold form a shaped cross-section. Cold drawn cross-sections are more precise and have a better surface finish than hot extruded parts. Inexpensive materials can be used instead of expensive alloys for strength requirements, due to work hardening. [5] Bars or rods that are drawn cannot be coiled; therefore, straight-pull draw benches are used. Chain drives are used to draw workpieces up to 30 m (98 ft). Hydraulic cylinders are used for shorter length workpieces. [1] The reduction in area is usually restricted to between 20% and 50%, because greater reductions would exceed the tensile strength of the material, depending on its ductility. To achieve a certain size or shape, multiple passes through progressively smaller dies and intermediate anneals may be required. [6] Tube drawing is very similar to bar drawing, except the beginning stock is a tube. It is used to decrease the diameter, improve surface finish, and improve dimensional accuracy. A mandrel may or may not be used depending on the specific process used. A floating plug may also be inserted into the inside diameter of the tube to control the wall thickness. Wire drawing has long been used to produce flexible metal wire by drawing the material through a series of dies of decreasing size. These dies are manufactured from a number of materials, the most common being tungsten carbide and diamond.

The cold drawing process for steel bars and wire is as follows:

  1. Tube lubrication: The surface of the bar or tube is coated with a drawing lubricant such as phosphate or oil to aid cold drawing.
  2. Push Pointing: Several inches of the lead ends of the bar or tube are reduced in size by swaging or extruding so that it can pass freely through the drawing die. This is done because the die opening is always smaller in size than the original bar or coil section.
  3. Cold drawing, process drawing: In this process, the material is drawn at room temperature. The reduced end of the bar or coil, which is smaller than the die opening, is passed through the die where it enters a gripping device of the drawing machine. The drawing machine pulls ("draws") the remaining unreduced section of the bar or coil through the die. The die reduces the cross section of the bar or coil, shapes its profile, and increases its length.
  4. Finished product: The drawn product, which is referred to as "cold drawn" or "cold finished", exhibits a bright or polished finish, increased mechanical properties, improved machining characteristics, and precise and uniform dimensional tolerances.
  5. Multi-pass drawing: The cold drawing of complex shapes or profiles may involve the workpiece being drawn multiple times through progressively smaller die openings in order to produce the desired shape and tolerances. Material is generally annealed between each drawing pass to increase its ductility and remove internal stresses produced during the cold working.
  6. Annealing: This is a thermal treatment generally used to soften the material being drawn; to modify the microstructure, the mechanical properties, and the machining characteristics of the steel; and to remove internal stresses in the product. Depending on the material and desired final characteristics, annealing may be used before, during (between passes), or after the cold drawing operation.

Glass

Similar drawing processes are applied in glassblowing and in making glass optical fiber. [7]

Plastics

Plastic drawing, sometimes referred to as cold drawing, is the same process as used on metal bars, applied to plastics. [8] Plastic drawing is primarily used in manufacturing plastic fibers. The process was discovered by Julian W. Hill in 1930 while trying to make fibers from an early polyester. [9]

It is performed after the material has been "spun" into filaments; by extruding the polymer melt through pores of a spinneret. During this process, the individual polymer chains tend to somewhat align because of viscous flow. These filaments still have an amorphous structure, so they are drawn to align the fibers further, thus increasing crystallinity, tensile strength, and stiffness. This is done on a draw twister machine. [9] [10] For nylon, the fiber is stretched to four times its spun length. The crystals formed during drawing are held together by hydrogen bonds between the amide hydrogens of one chain and the carbonyl oxygens of another chain. [10] Polyethylene terephthalate (PET) sheet is drawn in two dimensions to make BoPET (biaxially-oriented polyethylene terephthalate) with improved mechanical properties.

See also

Related Research Articles

<span class="mw-page-title-main">Forging</span> Metalworking process

Forging is a manufacturing process involving the shaping of metal using localized compressive forces. The blows are delivered with a hammer or a die. Forging is often classified according to the temperature at which it is performed: cold forging, warm forging, or hot forging. For the latter two, the metal is heated, usually in a forge. Forged parts can range in weight from less than a kilogram to hundreds of metric tons. Forging has been done by smiths for millennia; the traditional products were kitchenware, hardware, hand tools, edged weapons, cymbals, and jewellery.

A die is a specialized machine tool used in manufacturing industries to cut and/or form material to a desired shape or profile. Stamping dies are used with a press, as opposed to drawing dies and casting dies which are not. Like molds, dies are generally customized to the item they are used to create.

<span class="mw-page-title-main">Extrusion</span> Process of pushing material through a die to create long symmetrical-shaped objects

Extrusion is a process used to create objects of a fixed cross-sectional profile by pushing material through a die of the desired cross-section. Its two main advantages over other manufacturing processes are its ability to create very complex cross-sections; and to work materials that are brittle, because the material encounters only compressive and shear stresses. It also creates excellent surface finish and gives considerable freedom of form in the design process.

<span class="mw-page-title-main">Swaging</span> Metalworking process

Swaging is a forging process in which the dimensions of an item are altered using dies into which the item is forced. Swaging is usually a cold working process, but also may be hot worked.

<span class="mw-page-title-main">Sheet metal</span> Metal formed into thin, flat pieces

Sheet metal is metal formed into thin, flat pieces, usually by an industrial process. Sheet metal is one of the fundamental forms used in metalworking, and it can be cut and bent into a variety of shapes.

<span class="mw-page-title-main">Work hardening</span> Strengthening a material through plastic deformation

In materials science, work hardening, also known as strain hardening, is the strengthening of a metal or polymer by plastic deformation. Work hardening may be desirable, undesirable, or inconsequential, depending on the context.

<span class="mw-page-title-main">Shot peening</span> Cold metal working process to produce compressive residual stress

Shot peening is a cold working process used to produce a compressive residual stress layer and modify the mechanical properties of metals and composites. It entails striking a surface with shot with force sufficient to create plastic deformation.

<span class="mw-page-title-main">Draw plate</span> Die used to reduce the gauge of wire

A draw plate is type of die consisting of a hardened steel plate with one or more tapered holes through which wire is drawn to make it thinner. A typical plate will have twenty to thirty holes, so a wide range of diameters can be drawn.

<span class="mw-page-title-main">Wire drawing</span> Metalworking process used to create wire

Wire drawing is a metalworking process used to reduce the cross-section of a wire by pulling the wire through a single, or series of, drawing die(s). There are many applications for wire drawing, including electrical wiring, cables, tension-loaded structural components, springs, paper clips, spokes for wheels, and stringed musical instruments. Although similar in process, drawing is different from extrusion, because in drawing the wire is pulled, rather than pushed, through the die. Drawing is usually performed at room temperature, thus classified as a cold working process, but it may be performed at elevated temperatures for large wires to reduce forces.

<span class="mw-page-title-main">Punching</span> Creating a hole by forcing a tool through the workpiece

Punching is a forming process that uses a punch press to force a tool, called a punch, through the workpiece to create a hole via shearing. Punching is applicable to a wide variety of materials that come in sheet form, including sheet metal, paper, vulcanized fibre and some forms of plastic sheet. The punch often passes through the work into a die. A scrap slug from the hole is deposited into the die in the process. Depending on the material being punched this slug may be recycled and reused or discarded.

<span class="mw-page-title-main">Rolling (metalworking)</span> Metal forming process

In metalworking, rolling is a metal forming process in which metal stock is passed through one or more pairs of rolls to reduce the thickness, to make the thickness uniform, and/or to impart a desired mechanical property. The concept is similar to the rolling of dough. Rolling is classified according to the temperature of the metal rolled. If the temperature of the metal is above its recrystallization temperature, then the process is known as hot rolling. If the temperature of the metal is below its recrystallization temperature, the process is known as cold rolling. In terms of usage, hot rolling processes more tonnage than any other manufacturing process, and cold rolling processes the most tonnage out of all cold working processes. Roll stands holding pairs of rolls are grouped together into rolling mills that can quickly process metal, typically steel, into products such as structural steel, bar stock, and rails. Most steel mills have rolling mill divisions that convert the semi-finished casting products into finished products.

In metallurgy and materials science, annealing is a heat treatment that alters the physical and sometimes chemical properties of a material to increase its ductility and reduce its hardness, making it more workable. It involves heating a material above its recrystallization temperature, maintaining a suitable temperature for an appropriate amount of time and then cooling.

<span class="mw-page-title-main">Plastic extrusion</span> Melted plastic manufacturing process

Plastics extrusion is a high-volume manufacturing process in which raw plastic is melted and formed into a continuous profile. Extrusion produces items such as pipe/tubing, weatherstripping, fencing, deck railings, window frames, plastic films and sheeting, thermoplastic coatings, and wire insulation.

<span class="mw-page-title-main">Deep drawing</span>

Deep drawing is a sheet metal forming process in which a sheet metal blank is radially drawn into a forming die by the mechanical action of a punch. It is thus a shape transformation process with material retention. The process is considered "deep" drawing when the depth of the drawn part exceeds its diameter. This is achieved by redrawing the part through a series of dies.

In metallurgy, cold forming or cold working is any metalworking process in which metal is shaped below its recrystallization temperature, usually at the ambient temperature. Such processes are contrasted with hot working techniques like hot rolling, forging, welding, etc. The same or similar terms are used in glassmaking for the equivalents; for example cut glass is made by "cold work", cutting or grinding a formed object.

Tube drawing is a process to size a tube by shrinking a large diameter tube into a smaller one, by drawing the tube through a die. This process produces high-quality tubing with precise dimensions, good surface finish, and the added strength of cold working. For this reason this process is established for many materials, mainly metalworking but also glass. Because it is so versatile, tube drawing is suitable for both large- and small-scale production. The large-scale production of glass typically uses a one step process where glass is directly drawn into a tube from a melting tank.

<span class="mw-page-title-main">Bar stock</span> Bar of raw metal to be processed and manufactured

Bar stock, also (colloquially) known as blank, slug or billet, is a common form of raw purified metal, used by industry to manufacture metal parts and products. Bar stock is available in a variety of extrusion shapes and lengths. The most common shapes are round, rectangular, square and hexagonal. A bar is characterised by an "enclosed invariant convex cross-section", meaning that pipes, angle stock and objects with varying diameter are not considered bar stock.

<span class="mw-page-title-main">Blanking and piercing</span> Shearing processes

Blanking and piercing are shearing processes in which a punch and die are used to produce parts from coil or sheet stock. Blanking produces the outside features of the component, while piercing produces internal holes or shapes. The web is created after multiple components have been produced and is considered scrap material. The "slugs" produced by piercing internal features are also considered scrap. The terms "piercing" and "punching" can be used interchangeably.

A die in polymer processing is a metal restrictor or channel capable of providing a constant cross sectional profile to a stream of liquid polymer. This allows for continuous processing of shapes such as sheets, films, pipes, rods, and other more complex profiles. This is a continuous process, allowing for constant production, as opposed to a sequential (non-constant) process such as injection molding.

Rule based DFM analysis for forging is the controlled deformation of metal into a specific shape by compressive forces. The forging process goes back to 8000 B.C. and evolved from the manual art of simple blacksmithing. Then as now, a series of compressive hammer blows performs the shaping or forging of the part. Modern forging uses machine driven impact hammers or presses that deforms the work-piece by controlled pressure.

References

  1. 1 2 3 Degarmo, p. 432.
  2. Kalpakjian, pp. 415–419.
  3. Ganoksin Project. "Rolling and Drawing". Archived from the original on 2014-08-08.
  4. Degarmo, p. 434.
  5. Degarmo, pp. 433–434.
  6. Degarmo, p. 433.
  7. "Optical Fiber". www.thefoa.org. The Fiber Optic Association . Retrieved 17 April 2015.
  8. Degarmo, p. 461.
  9. 1 2 Spinning the Elements – Cold Drawing, Chemical Heritage Foundation, archived from the original on 2001-05-04, retrieved 2008-11-13
  10. 1 2 Menzer, Valerie, Nylon 66, archived from the original on 2005-06-13, retrieved 2008-11-13.

Further reading