Punching

Last updated
Extruded holes with the punch and die used to create them. No pilot hole was used on the left. Extruded Holes.JPG
Extruded holes with the punch and die used to create them. No pilot hole was used on the left.

Punching is a forming process that uses a punch press to force a tool, called a punch , through the workpiece to create a hole via shearing. Punching is applicable to a wide variety of materials that come in sheet form, including sheet metal, paper, vulcanized fibre and some forms of plastic sheet. The punch often passes through the work into a die. A scrap slug from the hole is deposited into the die in the process. Depending on the material being punched this slug may be recycled and reused or discarded.

Contents

Punching is often the cheapest method for creating holes in sheet materials in medium to high production volumes. When a specially shaped punch is used to create multiple usable parts from a sheet of material the process is known as blanking. In metal forging applications the work is often punched while hot, and this is called hot punching. Slugging is the operation of punching in which the punch is stopped as soon as the metal fracture is complete and metal is not removed but held in hole.

Process

Punch tooling (punch and die) is often made of hardened steel or tungsten carbide. A die is located on the opposite side of the workpiece and supports the material around the perimeter of the hole and helps to localize the shearing forces for a cleaner edge. There is a small amount of clearance between the punch and the die to prevent the punch from sticking in the die and so less force is needed to make the hole. The amount of clearance needed depends on the thickness, with thicker materials requiring more clearance, but the clearance is always greater than the thickness of the workpiece. The clearance is also dependent on the hardness of the workpiece. The punch press forces the punch through a workpiece, producing a hole that has a diameter equivalent to the punch, or slightly smaller after the punch is removed. All ductile materials stretch to some extent during punching which often causes the punch to stick in the workpiece. In this case, the punch must be physically pulled back out of the hole while the work is supported from the punch side, and this process is known as stripping. The hole walls will show burnished area, rollover, and die break and must often be further processed. The slug from the hole falls through the die into some sort of container to either dispose of the slug or recycle it.

Punching characteristics


The characteristics of punching are:

Geometry

Titanium nitride (TiN) coated industrial punches using cathodic arc deposition technique TiNCoatedPunches NanoShieldPVD Thailand.JPG
Titanium nitride (TiN) coated industrial punches using cathodic arc deposition technique

The workpiece is often in the form of a sheet or roll. Materials for the workpiece can vary, commonly being metals and plastics. The punch and die themselves can have a variety of shapes to create an array of different shaped holes in the workpiece. Multiple punches may be used together to create a part in one step.

Usually, the punch and die are close to the same dimensions, creating a sheared edge when they meet. A punch that is significantly smaller than the die can be used to produce an extruded hole where the punch displaces the punched material to the sides, forming a tube perpendicular to the punched sheet. [2] [3]

Equipment

Most punch presses are mechanically operated, but simple punches are often hand-powered. Major components of this mechanical press are the frame, motor, ram, die posts, bolster, and bed. The punch is mounted into the ram, and the die is mounted to the bolster plate. The scrap material drops through as the workpiece is advanced for the next hole. Most common in industry are large computer-controlled punch press, called a CNC. These most commonly are of the 'turret' or 'rail' variety. A turret punch press houses punches and their corresponding dies in a revolving indexed turret, while a rail type punch stores tooling on a back rail out of the way of the workpiece. These machines use hydraulic as well as pneumatic power to press the shape with enough force to shear the metal.

Forces

The punch force required to punch a piece of sheet metal can be estimated from the following equation: [4]

Where t is the sheet metal thickness, L is the total length sheared (perimeter of the shape), and UTS is the ultimate tensile strength of the material.

Die and punch shapes affect the force during the punching process. The punch force increases during the process as the entire thickness of the material is sheared at once. A beveled punch helps in the shearing of thicker materials by reducing the force at the beginning of the stroke. However, beveling a punch will disort the shape because of lateral forces that develop. Compound dies allow multiple shaping to occur. Using compound dies will generally slow down the process and are typically more expensive than other dies. Progressive dies may be used in high production operations. Different punching operations and dies may be used at different stages of the operation on the same machine.

Other processes such as stamping, blanking, perforating, parting, drawing, notching, lancing and bending operations are all related to punching.

Plastics

Punching in plastics fabrication usually refers to the removal of scrap plastic from the desired article. For example, in extrusion blow molding it is common to use punching dies to remove tails, molding flash (scrap plastic) and handle slugs from bottles or other molded containers.

In shuttle machinery, the containers are usually trimmed in the machines, and finished containers leave the blow molding machine. Other blow molding equipment, such as rotary wheel machinery, requires the use of downstream trimming. Types of downstream trimming equipment include detabbers for tail removal, rotary or reciprocating punch trimmers, and spin trimmers.

See also

Related Research Articles

Forging Metalworking process

Forging is a manufacturing process involving the shaping of metal using localized compressive forces. The blows are delivered with a hammer or a die. Forging is often classified according to the temperature at which it is performed: cold forging, warm forging, or hot forging. For the latter two, the metal is heated, usually in a forge. Forged parts can range in weight from less than a kilogram to hundreds of metric tons. Forging has been done by smiths for millennia; the traditional products were kitchenware, hardware, hand tools, edged weapons, cymbals, and jewellery. Since the Industrial Revolution, forged parts are widely used in mechanisms and machines wherever a component requires high strength; such forgings usually require further processing to achieve a finished part. Today, forging is a major worldwide industry.

Metalworking Process of making items from metal

Metalworking is the process of shaping and reshaping metals to create useful objects, parts, assemblies, and large scale structures. As a term it covers a wide and diverse range of processes, skills, and tools for producing objects on every scale: from huge ships, buildings, and bridges down to precise engine parts and delicate jewelry.

Perforation (Making) a small hole in a thin material

A perforation is a small hole in a thin material or web. There is usually more than one perforation in an organized fashion, where all of the holes collectively are called a perforation. The process of creating perforations is called perforating, which involves puncturing the workpiece with a tool.

A die is a specialized machine tool used in manufacturing industries to cut and/or form material to a desired shape or profile. Stamping dies are used with a press, as opposed to drawing dies and casting dies which are not. Like molds, dies are generally customized to the item they are used to create.

Metal fabrication Creation of metal structures

Metal fabrication is the creation of metal structures by cutting, bending and assembling processes. It is a value-added process involving the creation of machines, parts, and structures from various raw materials.

Thermoforming is a manufacturing process where a plastic sheet is heated to a pliable forming temperature, formed to a specific shape in a mold, and trimmed to create a usable product. The sheet, or "film" when referring to thinner gauges and certain material types, is heated in an oven to a high-enough temperature that permits it to be stretched into or onto a mold and cooled to a finished shape. Its simplified version is vacuum forming.

Vacuum forming Thermoforming of plastic material

Vacuum forming is a simplified version of thermoforming, where a sheet of plastic which is called HIPS is heated to a forming temperature, stretched onto a single-surface mold, and forced against the mold by a vacuum. This process can be used to form plastic into permanent objects such as turnpike signs and protective covers. Normally draft angles are present in the design of the mold to ease removal of the formed plastic part from the mold.

Sheet metal Metal formed by an industrial process into thin, flat pieces

Sheet metal is metal formed by an industrial process into thin, flat pieces. Sheet metal is one of the fundamental forms used in metalworking, and it can be cut and bent into a variety of shapes. Countless everyday objects are fabricated from sheet metal. Thicknesses can vary significantly; extremely thin sheets are considered foil or leaf, and pieces thicker than 6 mm (0.25 in) are considered plate steel or "structural steel".

Punch press

A punch press is a type of machine press used to cut holes in material. It can be small and manually operated and hold one simple die set, or be very large, CNC operated, with a multi-station turret and hold a much larger and complex die set.

Blow molding Manufacturing process for forming and joining together hollow plastic parts

Blow molding is a manufacturing process for forming and joining together hollow plastic parts. It is also used for forming glass bottles or other hollow shapes.

In the context of machining, a cutting tool or cutter is typically a hardened metal tool that is used to cut, shape, and remove material from a workpiece by means of machining tools as well as abrasive tools by way of shear deformation. The majority of these tools are designed exclusively for metals. There are several different types of single edge cutting tools that are made from a variety of hardened metal alloys that are ground to a specific shape in order to perform a specific part of the turning process resulting in a finished machined part. Single edge cutting tools are used mainly in the turning operations performed by a lathe in which they vary in size as well as alloy composition depending on the size and the type of material being turned. These cutting tools are held stationary by what is known as a tool post which is what manipulates the tools to cut the material into the desired shape. Single edge cutting tools are also the means of cutting material performed by metal shaping machines and metal planing machines which removes material by means of one cutting edge. Milling and drilling tools are often multipoint tools. Drilling is exclusively used to make holes in a workpiece. All drill bits have two cutting edges that are ground into two equally tapered angles which cuts through the material by applying downward rotational force. Endmills or milling bits, which also cut material by rotational force. Although these tools are not made to put holes in a workpiece. They cut by horizontal shear deformation in which the workpiece is brought into the tool as it's rotating. This is known as the tool path which is determined by the axis of the table that is holding the workpiece in place. This table is designed to accept a variety of vises and clamping tools so that it can move into the cutter at various angles and directions while the workpiece remains still. There are several different types of endmills that perform a certain type of milling action.

Bending (metalworking)

Bending is a manufacturing process that produces a V-shape, U-shape, or channel shape along a straight axis in ductile materials, most commonly sheet metal. Commonly used equipment include box and pan brakes, brake presses, and other specialized machine presses. Typical products that are made like this are boxes such as electrical enclosures and rectangular ductwork.

Shear forming

Shear forming, also referred as shear spinning, is similar to metal spinning. In shear spinning the area of the final piece is approximately equal to that of the flat sheet metal blank. The wall thickness is maintained by controlling the gap between the roller and the mandrel. In shear forming a reduction of the wall thickness occurs.

Notching is a metal-cutting process used on sheet-metal or thin bar-stock, sometimes on angle sections or tube. A shearing or punching process is used in a press, so as to cut vertically down and perpendicular to the surface, working from the edge of a work-piece. Sometimes the goal is merely the notch itself, but usually this is a precursor to some other process: such as bending a corner in sheet or joining two tubes at a tee joint, notching one to fit closely to the other.

Shearing, also known as die cutting, is a process that cuts stock without the formation of chips or the use of burning or melting. Strictly speaking, if the cutting blades are straight the process is called shearing; if the cutting blades are curved then they are shearing-type operations. The most commonly sheared materials are in the form of sheet metal or plates. However, rods can also be sheared. Shearing-type operations include blanking, piercing, roll slitting, and trimming. It is used for metal, fabric, paper and plastics.

Blanking and piercing Shearing processes

Blanking and piercing are shearing processes in which a punch and die are used to produce parts from coil or sheet stock. Blanking produces the outside features of the component, while piercing produces internal holes or shapes. The web is created after multiple components have been produced and is considered scrap material. The "slugs" produced by piercing internal features are also considered scrap. The terms "piercing" and "punching" can be used interchangeably.

Impact extrusion is a manufacturing process similar to extrusion and drawing by which products are made with a metal slug. The slug is pressed at a high velocity with extreme force into a die or mold by a punch.

Metal spinning

Metal spinning, also known as spin forming or spinning or metal turning most commonly, is a metalworking process by which a disc or tube of metal is rotated at high speed and formed into an axially symmetric part. Spinning can be performed by hand or by a CNC lathe.

Press tools are commonly used in hydraulic, pneumatic, and mechanical presses to produce the sheet metal components in large volumes. Generally press tools are categorized by the types of operation performed using the tool, such as blanking, piercing, bending, forming, forging, trimming etc. The press tool will also be specified as a blanking tool, piercing tool, bending tool etc.

Turret punch


A turret punch or turret press is a type of punch press used for metal forming by punching.

References

  1. Todd, Robert H., Dell K. Allen, and Leo Alting. Manufacturing Processes Reference Guide. New York: Industrial Press Inc. 1994. Pg 107.
  2. Peter Ulintz, Hole Extrusions--Part 1 Metalforming Magazine Archived 2016-03-05 at the Wayback Machine , Oct. 2011.
  3. O. D. Lascoe, 6B: Design Considerations for Stamping, Handbook of Fabrication Processes, ASM International, 1988; page 435.
  4. Kalpakjian, Serope; Schmid, Steven R. (2006). Manufacturing Engineering and Technology (5th edition ed.) p. 428.