Burnishing (metal)

Last updated
The inner raceway of this roller bearing has been burnished by the bearing's rollers. Traces brunes sur une bague de roulement.jpg
The inner raceway of this roller bearing has been burnished by the bearing's rollers.

Burnishing is the plastic deformation of a surface due to sliding contact with another object. It smooths the surface and makes it shinier. Burnishing may occur on any sliding surface if the contact stress locally exceeds the yield strength of the material. The phenomenon can occur both unintentionally as a failure mode, and intentionally as part of a metalworking or manufacturing process. It is a squeezing operation under cold working.

Contents

Failure mode (unintentionally)

A ball carves a channel through a flat plate. Bille gorge.png
A ball carves a channel through a flat plate.

The action of a hardened ball against a softer, flat plate illustrates the process of burnishing. If the ball is pushed directly into the plate, stresses develop in both objects around the area where they contact. As this normal force increases, both the ball and the plate's surfaces deform.

The deformation caused by the hardened ball increases with the magnitude of the force pressing against it. If the force on it is small, when the force is released both the ball and plate's surface will return to their original, undeformed shape. In that case, the stresses in the plate are always less than the yield strength of the material, so the deformation is purely elastic. Since it was given that the flat plate is softer than the ball, the plate's surface will always deform more.

Elastic deformation (A) and plastic deformation (B) Plastic and elastic Deformation.svg
Elastic deformation (A) and plastic deformation (B)

If a larger force is used, there will also be plastic deformation and the plate's surface will be permanently altered. A bowl-shaped indentation will be left behind, surrounded by a ring of raised material that was displaced by the ball. The stresses between the ball and the plate are described in more detail by Hertzian stress theory.

Dragging the ball across the plate will have a different effect than pressing. In that case, the force on the ball can be decomposed into two component forces: one normal to the plate's surface, pressing it in, and the other tangential, dragging it along. As the tangential component is increased, the ball will start to slide along the plate. At the same time, the normal force will deform both objects, just as with the static situation. If the normal force is low, the ball will rub against the plate but not permanently alter its surface. The rubbing action will create friction and heat, but it will not leave a mark on the plate. However, as the normal force increases, eventually the stresses in the plate's surface will exceed its yield strength. When this happens the ball will plow through the surface and create a trough behind it. The plowing action of the ball is burnishing. Burnishing also occurs when the ball can rotate, as would happen in the above scenario if another flat plate was brought down from above to induce downwards loading, and at the same time to cause rotation and translation of the ball, or in the case of a ball bearing.

Upon magnification, two flat plates touch only at a few asperities. Contacts.png
Upon magnification, two flat plates touch only at a few asperities.

Burnishing also occurs on surfaces that conform to each other, such as between two flat plates, but it happens on a microscopic scale. Even the smoothest of surfaces will have imperfections if viewed at a high enough magnification. The imperfections that extend above the general form of a surface are called asperities, and they can plow material on another surface just like the ball dragging along the plate. The combined effect of many of these asperities produce the smeared texture that is associated with burnishing.

Effects on sliding contact

Burnishing is normally undesirable in mechanical components for a variety of reasons, sometimes simply because its effects are unpredictable. Even light burnishing will significantly alter the surface finish of a part. Initially the finish will be smoother, but with repetitive sliding action, grooves will develop on the surface along the sliding direction. The plastic deformation associated with burnishing will harden the surface and generate compressive residual stresses. Although these properties are usually advantageous, excessive burnishing leads to sub-surface cracks which cause spalling, a phenomenon where the upper layer of a surface flakes off of the bulk material.

Burnishing may also affect the performance of a machine. The plastic deformation associated with burnishing creates greater heat and friction than from rubbing alone. This reduces the efficiency of the machine and limits its speed. Furthermore, plastic deformation alters the form and geometry of the part. This reduces the precision and accuracy of the machine. The combination of higher friction and degraded form often leads to a runaway situation that continually worsens until the component fails.

To prevent destructive burnishing, sliding must be avoided, and in rolling situations, loads must be beneath the spalling threshold. In the areas of a machine that slide with respect to each other, roller bearings can be inserted so that the components are in rolling contact instead of sliding. If sliding cannot be avoided, then a lubricant should be added between the components. The purpose of the lubricant in this case is to separate the components with a lubricant film so they cannot contact. The lubricant also distributes the load over a larger area, so that the local contact forces are not as high. If there was already a lubricant, its film thickness must be increased; usually this can be accomplished by increasing the viscosity of the lubricant.

In manufacturing (intentionally)

Burnishing is not always unwanted. If it occurs in a controlled manner, it can have desirable effects. Burnishing processes are used in manufacturing to improve the size, shape, surface finish, or surface hardness of a workpiece. It is essentially a forming operation that occurs on a small scale. The benefits of burnishing often include combatting fatigue failure, preventing corrosion and stress corrosion, texturing surfaces to eliminate visual defects, closing porosity, creating surface compressive residual stress.

There are several forms of burnishing processes, the most common are roller burnishing and ball burnishing (a subset of which is also referred to as ballizing). In both cases, a burnishing tool runs against the workpiece and plastically deforms its surface. In some instances of the latter case (and always in ballizing), it rubs, in the former it generally rotates and rolls. The workpiece may be at ambient temperature, or heated to reduce the forces and wear on the tool. The tool is usually hardened and coated with special materials to increase its life.

Ball burnishing, or ballizing, is a replacement for other bore finishing operations such as grinding, honing, or polishing. A ballizing tool consists of one or more over-sized balls that are pushed through a hole. The tool is similar to a broach, but instead of cutting away material, it plows it out of the way. [1]

Ball burnishing is also used as a deburring operation. It is especially useful for removing the burr in the middle of a through hole that was drilled from both sides. [1]

Ball burnishing tools of another type are sometimes used in CNC milling centres to follow a ball-nosed milling operation: the hardened ball is applied along a zig-zag toolpath in a holder similar to a ball-point pen, except that the 'ink' is pressurised, recycled lubricant. This combines the productivity of a machined finish which is achieved by a 'semi-finishing' cut, with a better finish than obtainable with slow and time-consuming finish cuts. The feed rate for burnishing is that associated with 'rapid traverse' rather than finish machining.

Roller burnishing, or surface rolling, is used on cylindrical, conical, or disk shaped workpieces. The tool resembles a roller bearing, but the rollers are generally very slightly tapered so that their envelope diameter can be accurately adjusted. The rollers typically rotate within a cage, as in a roller bearing. Typical applications for roller burnishing include hydraulic system components, shaft fillets, and sealing surfaces. [2] Very close control of size can be exercised.

Burnishing also occurs to some extent in machining processes. In turning, burnishing occurs if the cutting tool is not sharp, if a large negative rake angle is used, if a very small depth of cut is used, or if the workpiece material is gummy. As a cutting tool wears, it becomes more blunt and the burnishing effect becomes more pronounced. In grinding, since the abrasive grains are randomly oriented and some are not sharp, there is always some amount of burnishing. This is one reason the grinding is less efficient and generates more heat than turning. In drilling, burnishing occurs with drills that have lands to burnish the material as it drills into it. Regular twist drills or straight fluted drills have 2 lands to guide them through the hole. On burnishing drills there are 4 or more lands, similar to reamers.

Burnish setting, also known as flush, gypsy, or shot setting, is a setting technique used in stonesetting. A space is drilled, into which a stone is inserted such that the girdle of the stone, the point of maximum diameter, is just below the surface of the metal. A burnishing tool is used to push metal all around the stone to hold the stone and give a flush appearance, with a burnished edge around it. This type of setting has a long history but is gaining a resurgence in contemporary jewelry.

See also

Related Research Articles

<span class="mw-page-title-main">Forging</span> Metalworking process

Forging is a manufacturing process involving the shaping of metal using localized compressive forces. The blows are delivered with a hammer or a die. Forging is often classified according to the temperature at which it is performed: cold forging, warm forging, or hot forging. For the latter two, the metal is heated, usually in a forge. Forged parts can range in weight from less than a kilogram to hundreds of metric tons. Forging has been done by smiths for millennia; the traditional products were kitchenware, hardware, hand tools, edged weapons, cymbals, and jewellery.

<span class="mw-page-title-main">Plasticity (physics)</span> Non-reversible deformation of a solid material in response to applied forces

In physics and materials science, plasticity is the ability of a solid material to undergo permanent deformation, a non-reversible change of shape in response to applied forces. For example, a solid piece of metal being bent or pounded into a new shape displays plasticity as permanent changes occur within the material itself. In engineering, the transition from elastic behavior to plastic behavior is known as yielding.

Tribology is the science and engineering of understanding friction, lubrication and wear phenomena for interacting surfaces in relative motion. It is highly interdisciplinary, drawing on many academic fields, including physics, chemistry, materials science, mathematics, biology and engineering. The fundamental objects of study in tribology are tribosystems, which are physical systems of contacting surfaces. Subfields of tribology include biotribology, nanotribology and space tribology. It is also related to other areas such as the coupling of corrosion and tribology in tribocorrosion and the contact mechanics of how surfaces in contact deform. Approximately 20% of the total energy expenditure of the world is due to the impact of friction and wear in the transportation, manufacturing, power generation, and residential sectors.

A die is a specialized machine tool used in manufacturing industries to cut and/or form material to a desired shape or profile. Stamping dies are used with a press, as opposed to drawing dies and casting dies which are not. Like molds, dies are generally customized to the item they are used to create.

<span class="mw-page-title-main">Drilling</span> Cutting process that uses a drill bit to cut a circular hole into the workpiece

Drilling is a cutting process where a drill bit is spun to cut a hole of circular cross-section in solid materials. The drill bit is usually a rotary cutting tool, often multi-point. The bit is pressed against the work-piece and rotated at rates from hundreds to thousands of revolutions per minute. This forces the cutting edge against the work-piece, cutting off chips (swarf) from the hole as it is drilled.

<span class="mw-page-title-main">Swaging</span> Metalworking process

Swaging is a forging process in which the dimensions of an item are altered using dies into which the item is forced. Swaging is usually a cold working process, but also may be hot worked.

<span class="mw-page-title-main">Electromagnetic forming</span>

Electromagnetic forming is a type of high-velocity, cold forming process for electrically conductive metals, most commonly copper and aluminium. The workpiece is reshaped by high-intensity pulsed magnetic fields that induce a current in the workpiece and a corresponding repulsive magnetic field, rapidly repelling portions of the workpiece. The workpiece can be reshaped without any contact from a tool, although in some instances the piece may be pressed against a die or former. The technique is sometimes called high-velocity forming or electromagnetic pulse technology.

<span class="mw-page-title-main">Galling</span> Form of wear caused by adhesion between sliding surfaces

Galling is a form of wear caused by adhesion between sliding surfaces. When a material galls, some of it is pulled with the contacting surface, especially if there is a large amount of force compressing the surfaces together. Galling is caused by a combination of friction and adhesion between the surfaces, followed by slipping and tearing of crystal structure beneath the surface. This will generally leave some material stuck or even friction welded to the adjacent surface, whereas the galled material may appear gouged with balled-up or torn lumps of material stuck to its surface.

<span class="mw-page-title-main">Work hardening</span> Strengthening a material through plastic deformation

In materials science, work hardening, also known as strain hardening, is the strengthening of a metal or polymer by plastic deformation. Work hardening may be desirable, undesirable, or inconsequential, depending on the context.

<span class="mw-page-title-main">Shot peening</span> Cold metal working process to produce compressive residual stress

Shot peening is a cold working process used to produce a compressive residual stress layer and modify the mechanical properties of metals and composites. It entails striking a surface with shot with force sufficient to create plastic deformation.

Hardening is a metallurgical metalworking process used to increase the hardness of a metal. The hardness of a metal is directly proportional to the uniaxial yield stress at the location of the imposed strain. A harder metal will have a higher resistance to plastic deformation than a less hard metal.

<span class="mw-page-title-main">Rolling (metalworking)</span> Metal forming process

In metalworking, rolling is a metal forming process in which metal stock is passed through one or more pairs of rolls to reduce the thickness, to make the thickness uniform, and/or to impart a desired mechanical property. The concept is similar to the rolling of dough. Rolling is classified according to the temperature of the metal rolled. If the temperature of the metal is above its recrystallization temperature, then the process is known as hot rolling. If the temperature of the metal is below its recrystallization temperature, the process is known as cold rolling. In terms of usage, hot rolling processes more tonnage than any other manufacturing process, and cold rolling processes the most tonnage out of all cold working processes. Roll stands holding pairs of rolls are grouped together into rolling mills that can quickly process metal, typically steel, into products such as structural steel, bar stock, and rails. Most steel mills have rolling mill divisions that convert the semi-finished casting products into finished products.

In metallurgy, cold forming or cold working is any metalworking process in which metal is shaped below its recrystallization temperature, usually at the ambient temperature. Such processes are contrasted with hot working techniques like hot rolling, forging, welding, etc. The same or similar terms are used in glassmaking for the equivalents; for example cut glass is made by "cold work", cutting or grinding a formed object.

Shearing, also known as die cutting, is a process that cuts stock without the formation of chips or the use of burning or melting. Strictly speaking, if the cutting blades are straight the process is called shearing; if the cutting blades are curved then they are shearing-type operations. The most commonly sheared materials are in the form of sheet metal or plates. However, rods can also be sheared. Shearing-type operations include blanking, piercing, roll slitting, and trimming. It is used for metal, fabric, paper and plastics.

Brinelling is the permanent indentation of a hard surface. It is named after the Brinell scale of hardness, in which a small ball is pushed against a hard surface at a preset level of force, and the depth and diameter of the mark indicates the Brinell hardness of the surface. Brinelling is permanent plastic deformation of a surface, and usually occurs while two surfaces in contact are stationary and the material yield strength has been exceeded.

Low plasticity burnishing (LPB) is a method of metal improvement that provides deep, stable surface compressive residual stresses with little cold work for improved damage tolerance and metal fatigue life extension. Improved fretting fatigue and stress corrosion performance has been documented, even at elevated temperatures where the compression from other metal improvement processes relax. The resulting deep layer of compressive residual stress has also been shown to improve high cycle fatigue (HCF) and low cycle fatigue (LCF) performance.

Mass finishing is a group of manufacturing processes that allow large quantities of parts to be simultaneously finished. The goal of this type of finishing is to burnish, deburr, clean, radius, de-flash, descale, remove rust, polish, brighten, surface harden, prepare parts for further finishing, or break off die cast runners. The two main types of mass finishing are tumble finishing, also known as barrel finishing, and vibratory finishing. Both involve the use of a cyclical action to create grinding contact between surfaces. Sometimes the workpieces are finished against each other; however, usually a finishing medium is used. Mass finishing can be performed dry or wet; wet processes have liquid lubricants, cleaners, or abrasives, while dry processes do not. Cycle times can be as short as 10 minutes for nonferrous workpieces or as long as 2 hours for hardened steel.

<span class="mw-page-title-main">Roller burnishing</span> Process used to obtain mirror finishes inside metal holes

Roller burnishing is a surface finishing technique where hardened rollers cold work surface imperfections to reduce surface roughness. Roller burnishing differs from abrasive surface finishing techniques in that material is displaced rather than removed. The tooling typically consists of a hardened sphere or cylindrical roller. The tooling is pressed into the surface of the part while it is rotated. The burnishing tool rolls against the surface of the part at a constant speed, producing a very consistent finish across the part. A surface finish of less than Ra 0.1 µm is achievable with roller burnishing. A side effect is that the outer surface of the part is work hardened.

Surface integrity is the surface condition of a workpiece after being modified by a manufacturing process. The term was coined by Michael Field and John F. Kahles in 1964.

Rule based DFM analysis for forging is the controlled deformation of metal into a specific shape by compressive forces. The forging process goes back to 8000 B.C. and evolved from the manual art of simple blacksmithing. Then as now, a series of compressive hammer blows performs the shaping or forging of the part. Modern forging uses machine driven impact hammers or presses that deforms the work-piece by controlled pressure.

References

  1. 1 2 Bakerjian, Ramon; Cubberly, W. H. (1989). Tool and manufacturing engineers handbook. Dearborn, Mich: Society of Manufacturing Engineers. pp. 45–7 to 45-11. ISBN   0-87263-351-9.
  2. Kalpakjian, Serope; Steven R. Schmid (2003). Manufacturing Processes for Engineering Materials. Pearson Education. p. 152. ISBN   81-7808-990-4. OCLC   66275970.