Last updated

Simulated blocks with fractal rough surfaces, exhibiting static frictional interactions Friction between surfaces.jpg
Simulated blocks with fractal rough surfaces, exhibiting static frictional interactions

Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. [2] There are several types of friction:

Force Any action that tends to maintain or alter the motion of an object

In physics, a force is any interaction that, when unopposed, will change the motion of an object. A force can cause an object with mass to change its velocity, i.e., to accelerate. Force can also be described intuitively as a push or a pull. A force has both magnitude and direction, making it a vector quantity. It is measured in the SI unit of newtons and represented by the symbol F.

Sliding is a type of frictional motion between two surfaces in contact. This can be contrasted to rolling motion. Both types of motion may occur in bearings.


Stiction is the static friction that needs to be overcome to enable relative motion of stationary objects in contact. The term is a portmanteau of the words static and friction, perhaps also influenced by the verb stick.

Asperity (materials science) Unevenness of surface, roughness, and ruggedness

In materials science, asperity, defined as "unevenness of surface, roughness, ruggedness", has implications in physics and seismology. Smooth surfaces, even those polished to a mirror finish, are not truly smooth on a microscopic scale. They are rough, with sharp, rough or rugged projections, termed "asperities". Surface asperities exist across multiple scales, often in a self affine or fractal geometry. The fractal dimension of these structures has been correlated with the contact mechanics exhibited at an interface in terms of friction and contact stiffness.

A lubricant is a substance, usually organic, introduced to reduce friction between surfaces in mutual contact, which ultimately reduces the heat generated when the surfaces move. It may also have the function of transmitting forces, transporting foreign particles, or heating or cooling the surfaces. The property of reducing friction is known as lubricity.

In fluid dynamics, drag is a force acting opposite to the relative motion of any object moving with respect to a surrounding fluid. This can exist between two fluid layers or a fluid and a solid surface. Unlike other resistive forces, such as dry friction, which are nearly independent of velocity, drag forces depend on velocity. Drag force is proportional to the velocity for a laminar flow and the squared velocity for a turbulent flow. Even though the ultimate cause of a drag is viscous friction, the turbulent drag is independent of viscosity.

Deformation (mechanics)

Deformation in continuum mechanics is the transformation of a body from a reference configuration to a current configuration. A configuration is a set containing the positions of all particles of the body.

When surfaces in contact move relative to each other, the friction between the two surfaces converts kinetic energy into thermal energy (that is, it converts work to heat). This property can have dramatic consequences, as illustrated by the use of friction created by rubbing pieces of wood together to start a fire. Kinetic energy is converted to thermal energy whenever motion with friction occurs, for example when a viscous fluid is stirred. Another important consequence of many types of friction can be wear, which may lead to performance degradation or damage to components. Friction is a component of the science of tribology.

Kinetic energy Energy in motion Or Object In Motion

In physics, the kinetic energy (KE) of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acceleration, the body maintains this kinetic energy unless its speed changes. The same amount of work is done by the body when decelerating from its current speed to a state of rest.

Thermal energy internal energy present in a system due to its temperature; is not a state function

Thermal energy can refer to several distinct thermodynamic quantities, such as the internal energy of a system; heat or sensible heat, which are defined as types of energy transfer ; or for the characteristic energy of a degree of freedom in a thermal system , where is temperature and is the Boltzmann constant.

Work (physics) process or amount (and direction) of energy transfer to an object via the application of forces on it through a displacement

Work is the product of force and displacement. In physics, a force is said to do work if, when acting, there is a movement of the point of application in the direction of the force.

Friction is desirable and important in supplying traction to facilitate motion on land. Most land vehicles rely on friction for acceleration, deceleration and changing direction. Sudden reductions in traction can cause loss of control and accidents.

Traction, or tractive force, is the force used to generate motion between a body and a tangential surface, through the use of dry friction, though the use of shear force of the surface is also commonly used.

Friction is not itself a fundamental force. Dry friction arises from a combination of inter-surface adhesion, surface roughness, surface deformation, and surface contamination. The complexity of these interactions makes the calculation of friction from first principles impractical and necessitates the use of empirical methods for analysis and the development of theory.

Friction is a non-conservative force - work done against friction is path dependent. In the presence of friction, some kinetic energy is always transformed to thermal energy, so mechanical energy is not conserved.


The Greeks, including Aristotle, Vitruvius, and Pliny the Elder, were interested in the cause and mitigation of friction. [8] They were aware of differences between static and kinetic friction with Themistius stating in 350 A.D. that "it is easier to further the motion of a moving body than to move a body at rest". [8] [9] [10] [11]

The classic laws of sliding friction were discovered by Leonardo da Vinci in 1493, a pioneer in tribology, but the laws documented in his notebooks, were not published and remained unknown. [12] [13] [14] [15] [16] [17] These laws were rediscovered by Guillaume Amontons in 1699 [18] and became known as Amonton's three laws of dry friction (below). Amontons presented the nature of friction in terms of surface irregularities and the force required to raise the weight pressing the surfaces together. This view was further elaborated by Bernard Forest de Bélidor [19] and Leonhard Euler (1750), who derived the angle of repose of a weight on an inclined plane and first distinguished between static and kinetic friction. [20] John Theophilus Desaguliers (1734) first recognized the role of adhesion in friction. [21] Microscopic forces cause surfaces to stick together; he proposed that friction was the force necessary to tear the adhering surfaces apart.

The understanding of friction was further developed by Charles-Augustin de Coulomb (1785). [22] Coulomb investigated the influence of four main factors on friction: the nature of the materials in contact and their surface coatings; the extent of the surface area; the normal pressure (or load); and the length of time that the surfaces remained in contact (time of repose). [12] Coulomb further considered the influence of sliding velocity, temperature and humidity, in order to decide between the different explanations on the nature of friction that had been proposed. The distinction between static and dynamic friction is made in Coulomb's friction law (see below), although this distinction was already drawn by Johann Andreas von Segner in 1758. [12] The effect of the time of repose was explained by Pieter van Musschenbroek (1762) by considering the surfaces of fibrous materials, with fibers meshing together, which takes a finite time in which the friction increases.

John Leslie (1766–1832) noted a weakness in the views of Amontons and Coulomb: If friction arises from a weight being drawn up the inclined plane of successive asperities, why then isn't it balanced through descending the opposite slope? Leslie was equally skeptical about the role of adhesion proposed by Desaguliers, which should on the whole have the same tendency to accelerate as to retard the motion. [12] In Leslie's view, friction should be seen as a time-dependent process of flattening, pressing down asperities, which creates new obstacles in what were cavities before.

Arthur Jules Morin (1833) developed the concept of sliding versus rolling friction. Osborne Reynolds (1866) derived the equation of viscous flow. This completed the classic empirical model of friction (static, kinetic, and fluid) commonly used today in engineering. [13] In 1877, Fleeming Jenkin and J. A. Ewing investigated the continuity between static and kinetic friction. [23]

The focus of research during the 20th century has been to understand the physical mechanisms behind friction. Frank Philip Bowden and David Tabor (1950) showed that, at a microscopic level, the actual area of contact between surfaces is a very small fraction of the apparent area. [14] This actual area of contact, caused by asperities increases with pressure. The development of the atomic force microscope (ca. 1986) enabled scientists to study friction at the atomic scale, [13] showing that, on that scale, dry friction is the product of the inter-surface shear stress and the contact area. These two discoveries explain Amonton's first law (below); the macroscopic proportionality between normal force and static frictional force between dry surfaces. L.A. Sosnovskiy, S.S. Sherbakov and V.V. Komissarov showed [24] that the friction force is proportional to both the contact and the volumetric (tensile-compression, bending, torsion, etc.) load, if the volumetric load causes cyclic stresses (±σ) in the contact area.

Laws of dry friction

The elementary property of sliding (kinetic) friction were discovered by experiment in the 15th to 18th centuries and were expressed as three empirical laws:

Dry friction

Dry friction resists relative lateral motion of two solid surfaces in contact. The two regimes of dry friction are 'static friction' ("stiction") between non-moving surfaces, and kinetic friction (sometimes called sliding friction or dynamic friction) between moving surfaces.

Coulomb friction, named after Charles-Augustin de Coulomb, is an approximate model used to calculate the force of dry friction. It is governed by the model:


The Coulomb friction may take any value from zero up to , and the direction of the frictional force against a surface is opposite to the motion that surface would experience in the absence of friction. Thus, in the static case, the frictional force is exactly what it must be in order to prevent motion between the surfaces; it balances the net force tending to cause such motion. In this case, rather than providing an estimate of the actual frictional force, the Coulomb approximation provides a threshold value for this force, above which motion would commence. This maximum force is known as traction.

The force of friction is always exerted in a direction that opposes movement (for kinetic friction) or potential movement (for static friction) between the two surfaces. For example, a curling stone sliding along the ice experiences a kinetic force slowing it down. For an example of potential movement, the drive wheels of an accelerating car experience a frictional force pointing forward; if they did not, the wheels would spin, and the rubber would slide backwards along the pavement. Note that it is not the direction of movement of the vehicle they oppose, it is the direction of (potential) sliding between tire and road.

Normal force

Free-body diagram for a block on a ramp. Arrows are vectors indicating directions and magnitudes of forces. N is the normal force, mg is the force of gravity, and Ff is the force of friction. Free body diagram2.svg
Free-body diagram for a block on a ramp. Arrows are vectors indicating directions and magnitudes of forces. N is the normal force, mg is the force of gravity, and Ff is the force of friction.

The normal force is defined as the net force compressing two parallel surfaces together, and its direction is perpendicular to the surfaces. In the simple case of a mass resting on a horizontal surface, the only component of the normal force is the force due to gravity, where . In this case, the magnitude of the friction force is the product of the mass of the object, the acceleration due to gravity, and the coefficient of friction. However, the coefficient of friction is not a function of mass or volume; it depends only on the material. For instance, a large aluminum block has the same coefficient of friction as a small aluminum block. However, the magnitude of the friction force itself depends on the normal force, and hence on the mass of the block.

If an object is on a level surface and the force tending to cause it to slide is horizontal, the normal force between the object and the surface is just its weight, which is equal to its mass multiplied by the acceleration due to earth's gravity, g . If the object is on a tilted surface such as an inclined plane, the normal force is less, because less of the force of gravity is perpendicular to the face of the plane. Therefore, the normal force, and ultimately the frictional force, is determined using vector analysis, usually via a free body diagram. Depending on the situation, the calculation of the normal force may include forces other than gravity.

Coefficient of friction

The coefficient of friction (COF), often symbolized by the Greek letter µ, is a dimensionless scalar value which describes the ratio of the force of friction between two bodies and the force pressing them together. The coefficient of friction depends on the materials used; for example, ice on steel has a low coefficient of friction, while rubber on pavement has a high coefficient of friction. Coefficients of friction range from near zero to greater than one. It is an axiom of the nature of friction between metal surfaces that it is greater between two surfaces of similar metals than between two surfaces of different metals— hence, brass will have a higher coefficient of friction when moved against brass, but less if moved against steel or aluminum. [25]

For surfaces at rest relative to each other , where is the coefficient of static friction. This is usually larger than its kinetic counterpart. The coefficient of static friction exhibited by a pair of contacting surfaces depends upon the combined effects of material deformation characteristics and surface roughness, both of which have their origins in the chemical bonding between atoms in each of the bulk materials and between the material surfaces and any adsorbed material. The fractality of surfaces, a parameter describing the scaling behavior of surface asperities, is known to play an important role in determining the magnitude of the static friction. [1]

For surfaces in relative motion , where is the coefficient of kinetic friction. The Coulomb friction is equal to , and the frictional force on each surface is exerted in the direction opposite to its motion relative to the other surface.

Arthur Morin introduced the term and demonstrated the utility of the coefficient of friction. [12] The coefficient of friction is an empirical measurement – it has to be measured experimentally, and cannot be found through calculations.[ citation needed ] Rougher surfaces tend to have higher effective values. Both static and kinetic coefficients of friction depend on the pair of surfaces in contact; for a given pair of surfaces, the coefficient of static friction is usually larger than that of kinetic friction; in some sets the two coefficients are equal, such as teflon-on-teflon.

Most dry materials in combination have friction coefficient values between 0.3 and 0.6. Values outside this range are rarer, but teflon, for example, can have a coefficient as low as 0.04. A value of zero would mean no friction at all, an elusive property. Rubber in contact with other surfaces can yield friction coefficients from 1 to 2. Occasionally it is maintained that µ is always < 1, but this is not true. While in most relevant applications µ < 1, a value above 1 merely implies that the force required to slide an object along the surface is greater than the normal force of the surface on the object. For example, silicone rubber or acrylic rubber-coated surfaces have a coefficient of friction that can be substantially larger than 1.

While it is often stated that the COF is a "material property," it is better categorized as a "system property." Unlike true material properties (such as conductivity, dielectric constant, yield strength), the COF for any two materials depends on system variables like temperature, velocity, atmosphere and also what are now popularly described as aging and deaging times; as well as on geometric properties of the interface between the materials, namely surface structure. [1] For example, a copper pin sliding against a thick copper plate can have a COF that varies from 0.6 at low speeds (metal sliding against metal) to below 0.2 at high speeds when the copper surface begins to melt due to frictional heating. The latter speed, of course, does not determine the COF uniquely; if the pin diameter is increased so that the frictional heating is removed rapidly, the temperature drops, the pin remains solid and the COF rises to that of a 'low speed' test.[ citation needed ]

Approximate coefficients of friction

MaterialsStatic Friction, Kinetic/Sliding Friction,
Dry and cleanLubricatedDry and cleanLubricated
AluminiumSteel0.61 [26] 0.47 [26]
AluminumAluminum1.05-1.35 [26] 0.3 [26] 1.4 [26] -1.5 [27]
GoldGold2.5 [27]
PlatinumPlatinum1.2 [26] 0.25 [26] 3.0 [27]
SilverSilver1.4 [26] 0.55 [26] 1.5 [27]
Alumina ceramicSilicon Nitride ceramic0.004 (wet) [28]
BAM (Ceramic alloy AlMgB14) Titanium boride (TiB2)0.04–0.05 [29] 0.02 [30] [31]
BrassSteel0.35-0.51 [26] 0.19 [26] 0.44 [26]
Cast ironCopper1.05 [26] 0.29 [26]
Cast ironZinc0.85 [26] 0.21 [26]
ConcreteRubber1.00.30 (wet)0.6-0.85 [26] 0.45-0.75 (wet) [26]
ConcreteWood0.62 [26] [32]
CopperSteel0.530.36 [26]
GlassGlass0.9-1.0 [26] 0.4 [26]
Human synovial fluidCartilage0.01 [33] 0.003 [33]
IceIce0.02-0.09 [34]
Polyethene Steel0.2 [26] [34] 0.2 [26] [34]
PTFE (Teflon)PTFE (Teflon)0.04 [26] [34] 0.04 [26] [34] 0.04 [26]
SteelIce0.03 [34]
SteelPTFE (Teflon)0.04 [26] -0.2 [34] 0.04 [26] 0.04 [26]
SteelSteel0.74 [26] -0.80 [34] 0.16 [34] 0.42-0.62 [26]
WoodMetal0.2–0.6 [26] [32] 0.2 (wet) [26] [32]
WoodWood0.25–0.5 [26] [32] 0.2 (wet) [26] [32]

Under certain conditions some materials have very low friction coefficients. An example is (highly ordered pyrolytic) graphite which can have a friction coefficient below 0.01. [35] This ultralow-friction regime is called superlubricity.

Static friction

When the mass is not moving, the object experiences static friction. The friction increases as the applied force increases until the block moves. After the block moves, it experiences kinetic friction, which is less than the maximum static friction. Static kinetic friction vs time.png
When the mass is not moving, the object experiences static friction. The friction increases as the applied force increases until the block moves. After the block moves, it experiences kinetic friction, which is less than the maximum static friction.

Static friction is friction between two or more solid objects that are not moving relative to each other. For example, static friction can prevent an object from sliding down a sloped surface. The coefficient of static friction, typically denoted as μs, is usually higher than the coefficient of kinetic friction. Static friction is considered to arise as the result of surface roughness features across multiple length-scales at solid surfaces. These features, known as asperities are present down to nano-scale dimensions and result in true solid to solid contact existing only at a limited number of points accounting for only a fraction of the apparent or nominal contact area [36] . The linearity between applied load and true contact area, arising from asperity deformation, gives rise to the linearity between static frictional force and normal force, found for typical Amonton-Coulomb type friction. [37]

The static friction force must be overcome by an applied force before an object can move. The maximum possible friction force between two surfaces before sliding begins is the product of the coefficient of static friction and the normal force: . When there is no sliding occurring, the friction force can have any value from zero up to . Any force smaller than attempting to slide one surface over the other is opposed by a frictional force of equal magnitude and opposite direction. Any force larger than overcomes the force of static friction and causes sliding to occur. The instant sliding occurs, static friction is no longer applicable—the friction between the two surfaces is then called kinetic friction.

An example of static friction is the force that prevents a car wheel from slipping as it rolls on the ground. Even though the wheel is in motion, the patch of the tire in contact with the ground is stationary relative to the ground, so it is static rather than kinetic friction.

The maximum value of static friction, when motion is impending, is sometimes referred to as limiting friction, [38] although this term is not used universally. [3]

Kinetic friction

Kinetic friction, also known as dynamic friction or sliding friction, occurs when two objects are moving relative to each other and rub together (like a sled on the ground). The coefficient of kinetic friction is typically denoted as μk, and is usually less than the coefficient of static friction for the same materials. [39] [40] However, Richard Feynman comments that "with dry metals it is very hard to show any difference." [41] The friction force between two surfaces after sliding begins is the product of the coefficient of kinetic friction and the normal force: .

New models are beginning to show how kinetic friction can be greater than static friction. [42] Kinetic friction is now understood, in many cases, to be primarily caused by chemical bonding between the surfaces, rather than interlocking asperities; [43] however, in many other cases roughness effects are dominant, for example in rubber to road friction. [42] Surface roughness and contact area affect kinetic friction for micro- and nano-scale objects where surface area forces dominate inertial forces. [44]

The origin of kinetic friction at nanoscale can be explained by thermodynamics. [45] Upon sliding, new surface forms at the back of a sliding true contact, and existing surface disappears at the front of it. Since all surfaces involve the thermodynamic surface energy, work must be spent in creating the new surface, and energy is released as heat in removing the surface. Thus, a force is required to move the back of the contact, and frictional heat is released at the front.

Angle of friction, th, when block just starts to slide. Free body.svg
Angle of friction, θ, when block just starts to slide.

Angle of friction

For certain applications, it is more useful to define static friction in terms of the maximum angle before which one of the items will begin sliding. This is called the angle of friction or friction angle. It is defined as:

where θ is the angle from horizontal and µs is the static coefficient of friction between the objects. [46] This formula can also be used to calculate µs from empirical measurements of the friction angle.

Friction at the atomic level

Determining the forces required to move atoms past each other is a challenge in designing nanomachines. In 2008 scientists for the first time were able to move a single atom across a surface, and measure the forces required. Using ultrahigh vacuum and nearly zero temperature (5º K), a modified atomic force microscope was used to drag a cobalt atom, and a carbon monoxide molecule, across surfaces of copper and platinum. [47]

Limitations of the Coulomb model

The Coulomb approximation follows from the assumptions that: surfaces are in atomically close contact only over a small fraction of their overall area; that this contact area is proportional to the normal force (until saturation, which takes place when all area is in atomic contact); and that the frictional force is proportional to the applied normal force, independently of the contact area. The Coulomb approximation is fundamentally an empirical construct. It is a rule-of-thumb describing the approximate outcome of an extremely complicated physical interaction. The strength of the approximation is its simplicity and versatility. Though the relationship between normal force and frictional force is not exactly linear (and so the frictional force is not entirely independent of the contact area of the surfaces), the Coulomb approximation is an adequate representation of friction for the analysis of many physical systems.

When the surfaces are conjoined, Coulomb friction becomes a very poor approximation (for example, adhesive tape resists sliding even when there is no normal force, or a negative normal force). In this case, the frictional force may depend strongly on the area of contact. Some drag racing tires are adhesive for this reason. However, despite the complexity of the fundamental physics behind friction, the relationships are accurate enough to be useful in many applications.

"Negative" coefficient of friction

As of 2012, a single study has demonstrated the potential for an effectively negative coefficient of friction in the low-load regime, meaning that a decrease in normal force leads to an increase in friction. This contradicts everyday experience in which an increase in normal force leads to an increase in friction. [48] This was reported in the journal Nature in October 2012 and involved the friction encountered by an atomic force microscope stylus when dragged across a graphene sheet in the presence of graphene-adsorbed oxygen. [48]

Numerical simulation of the Coulomb model

Despite being a simplified model of friction, the Coulomb model is useful in many numerical simulation applications such as multibody systems and granular material. Even its most simple expression encapsulates the fundamental effects of sticking and sliding which are required in many applied cases, although specific algorithms have to be designed in order to efficiently numerically integrate mechanical systems with Coulomb friction and bilateral or unilateral contact. [49] [50] [51] [52] [53] Some quite nonlinear effects, such as the so-called Painlevé paradoxes, may be encountered with Coulomb friction. [54]

Dry friction and instabilities

Dry friction can induce several types of instabilities in mechanical systems which display a stable behaviour in the absence of friction. [55] These instabilities may be caused by the decrease of the friction force with an increasing velocity of sliding, by material expansion due to heat generation during friction (the thermo-elastic instabilities), or by pure dynamic effects of sliding of two elastic materials (the Adams-Martins instabilities). The latter were originally discovered in 1995 by George G. Adams and João Arménio Correia Martins for smooth surfaces [56] [57] and were later found in periodic rough surfaces. [58] In particular, friction-related dynamical instabilities are thought to be responsible for brake squeal and the 'song' of a glass harp, [59] [60] phenomena which involve stick and slip, modelled as a drop of friction coefficient with velocity. [61]

A practically important case is the self-oscillation of the strings of bowed instruments such as the violin, cello, hurdy-gurdy, erhu, etc.

A connection between dry friction and flutter instability in a simple mechanical system has been discovered, [62] watch the movie for more details.

Frictional instabilities can lead to the formation of new self-organized patterns (or "secondary structures") at the sliding interface, such as in-situ formed tribofilms which are utilized for the reduction of friction and wear in so-called self-lubricating materials. [63]

Fluid friction

Fluid friction occurs between fluid layers that are moving relative to each other. This internal resistance to flow is named viscosity . In everyday terms, the viscosity of a fluid is described as its "thickness". Thus, water is "thin", having a lower viscosity, while honey is "thick", having a higher viscosity. The less viscous the fluid, the greater its ease of deformation or movement.

All real fluids (except superfluids) offer some resistance to shearing and therefore are viscous. For teaching and explanatory purposes it is helpful to use the concept of an inviscid fluid or an ideal fluid which offers no resistance to shearing and so is not viscous.

Lubricated friction

Lubricated friction is a case of fluid friction where a fluid separates two solid surfaces. Lubrication is a technique employed to reduce wear of one or both surfaces in close proximity moving relative to each another by interposing a substance called a lubricant between the surfaces.

In most cases the applied load is carried by pressure generated within the fluid due to the frictional viscous resistance to motion of the lubricating fluid between the surfaces. Adequate lubrication allows smooth continuous operation of equipment, with only mild wear, and without excessive stresses or seizures at bearings. When lubrication breaks down, metal or other components can rub destructively over each other, causing heat and possibly damage or failure.

Skin friction

Skin friction arises from the interaction between the fluid and the skin of the body, and is directly related to the area of the surface of the body that is in contact with the fluid. Skin friction follows the drag equation and rises with the square of the velocity.

Skin friction is caused by viscous drag in the boundary layer around the object. There are two ways to decrease skin friction: the first is to shape the moving body so that smooth flow is possible, like an airfoil. The second method is to decrease the length and cross-section of the moving object as much as is practicable.

Internal friction

Internal friction is the force resisting motion between the elements making up a solid material while it undergoes deformation.

Plastic deformation in solids is an irreversible change in the internal molecular structure of an object. This change may be due to either (or both) an applied force or a change in temperature. The change of an object's shape is called strain. The force causing it is called stress.

Elastic deformation in solids is reversible change in the internal molecular structure of an object. Stress does not necessarily cause permanent change. As deformation occurs, internal forces oppose the applied force. If the applied stress is not too large these opposing forces may completely resist the applied force, allowing the object to assume a new equilibrium state and to return to its original shape when the force is removed. This is known as elastic deformation or elasticity.

Radiation friction

As a consequence of light pressure, Einstein [64] in 1909 predicted the existence of "radiation friction" which would oppose the movement of matter. He wrote, “radiation will exert pressure on both sides of the plate. The forces of pressure exerted on the two sides are equal if the plate is at rest. However, if it is in motion, more radiation will be reflected on the surface that is ahead during the motion (front surface) than on the back surface. The backwardacting force of pressure exerted on the front surface is thus larger than the force of pressure acting on the back. Hence, as the resultant of the two forces, there remains a force that counteracts the motion of the plate and that increases with the velocity of the plate. We will call this resultant 'radiation friction' in brief.”

Other types of friction

Rolling resistance

Rolling resistance is the force that resists the rolling of a wheel or other circular object along a surface caused by deformations in the object or surface. Generally the force of rolling resistance is less than that associated with kinetic friction. [65] Typical values for the coefficient of rolling resistance are 0.001. [66] One of the most common examples of rolling resistance is the movement of motor vehicle tires on a road, a process which generates heat and sound as by-products. [67]

Braking friction

Any wheel equipped with a brake is capable of generating a large retarding force, usually for the purpose of slowing and stopping a vehicle or piece of rotating machinery. Braking friction differs from rolling friction because the coefficient of friction for rolling friction is small whereas the coefficient of friction for braking friction is designed to be large by choice of materials for brake pads.

Triboelectric effect

Rubbing dissimilar materials against one another can cause a build-up of electrostatic charge, which can be hazardous if flammable gases or vapours are present. When the static build-up discharges, explosions can be caused by ignition of the flammable mixture.

Belt friction

Belt friction is a physical property observed from the forces acting on a belt wrapped around a pulley, when one end is being pulled. The resulting tension, which acts on both ends of the belt, can be modeled by the belt friction equation.

In practice, the theoretical tension acting on the belt or rope calculated by the belt friction equation can be compared to the maximum tension the belt can support. This helps a designer of such a rig to know how many times the belt or rope must be wrapped around the pulley to prevent it from slipping. Mountain climbers and sailing crews demonstrate a standard knowledge of belt friction when accomplishing basic tasks.

Reducing friction


Devices such as wheels, ball bearings, roller bearings, and air cushion or other types of fluid bearings can change sliding friction into a much smaller type of rolling friction.

Many thermoplastic materials such as nylon, HDPE and PTFE are commonly used in low friction bearings. They are especially useful because the coefficient of friction falls with increasing imposed load [68] . For improved wear resistance, very high molecular weight grades are usually specified for heavy duty or critical bearings.


A common way to reduce friction is by using a lubricant, such as oil, water, or grease, which is placed between the two surfaces, often dramatically lessening the coefficient of friction. The science of friction and lubrication is called tribology. Lubricant technology is when lubricants are mixed with the application of science, especially to industrial or commercial objectives.

Superlubricity, a recently discovered effect, has been observed in graphite: it is the substantial decrease of friction between two sliding objects, approaching zero levels. A very small amount of frictional energy would still be dissipated.

Lubricants to overcome friction need not always be thin, turbulent fluids or powdery solids such as graphite and talc; acoustic lubrication actually uses sound as a lubricant.

Another way to reduce friction between two parts is to superimpose micro-scale vibration to one of the parts. This can be sinusoidal vibration as used in ultrasound-assisted cutting or vibration noise, known as dither.

Energy of friction

According to the law of conservation of energy, no energy is destroyed due to friction, though it may be lost to the system of concern. Energy is transformed from other forms into thermal energy. A sliding hockey puck comes to rest because friction converts its kinetic energy into heat which raises the thermal energy of the puck and the ice surface. Since heat quickly dissipates, many early philosophers, including Aristotle, wrongly concluded that moving objects lose energy without a driving force.

When an object is pushed along a surface along a path C, the energy converted to heat is given by a line integral, in accordance with the definition of work


is the friction force,
is the vector obtained by multiplying the magnitude of the normal force by a unit vector pointing against the object's motion,
is the coefficient of kinetic friction, which is inside the integral because it may vary from location to location (e.g. if the material changes along the path),
is the position of the object.

Energy lost to a system as a result of friction is a classic example of thermodynamic irreversibility.

Work of friction

In the reference frame of the interface between two surfaces, static friction does no work, because there is never displacement between the surfaces. In the same reference frame, kinetic friction is always in the direction opposite the motion, and does negative work. [69] However, friction can do positive work in certain frames of reference. One can see this by placing a heavy box on a rug, then pulling on the rug quickly. In this case, the box slides backwards relative to the rug, but moves forward relative to the frame of reference in which the floor is stationary. Thus, the kinetic friction between the box and rug accelerates the box in the same direction that the box moves, doing positive work. [70]

The work done by friction can translate into deformation, wear, and heat that can affect the contact surface properties (even the coefficient of friction between the surfaces). This can be beneficial as in polishing. The work of friction is used to mix and join materials such as in the process of friction welding. Excessive erosion or wear of mating sliding surfaces occurs when work due to frictional forces rise to unacceptable levels. Harder corrosion particles caught between mating surfaces in relative motion (fretting) exacerbates wear of frictional forces. Bearing seizure or failure may result from excessive wear due to work of friction. As surfaces are worn by work due to friction, fit and surface finish of an object may degrade until it no longer functions properly. [71]


Friction is an important factor in many engineering disciplines.



Household usage

See also

Related Research Articles

Inclined plane tilted flat surface; flat supporting surface tilted at an angle, with one end higher than the other, used as an aid for raising or lowering a load

An inclined plane, also known as a ramp, is a flat supporting surface tilted at an angle, with one end higher than the other, used as an aid for raising or lowering a load. The inclined plane is one of the six classical simple machines defined by Renaissance scientists. Inclined planes are widely used to move heavy loads over vertical obstacles; examples vary from a ramp used to load goods into a truck, to a person walking up a pedestrian ramp, to an automobile or railroad train climbing a grade.

Tribology is the science and engineering of interacting surfaces in relative motion. It includes the study and application of the principles of friction, lubrication and wear. Tribology is highly interdisciplinary. It draws on many academic fields, including physics, chemistry, materials science, mathematics, biology and engineering. People who work in the field of tribology are referred to as tribologists.

Ski wax material applied to the bottom of snow runners, including skis, snowboards, and toboggans, to improve their coefficient of friction performance under varying snow conditions

Ski wax is a material applied to the bottom of snow runners, including skis, snowboards, and toboggans, to improve their coefficient of friction performance under varying snow conditions. The two main types of wax used on skis are glide waxes and grip waxes. They address kinetic friction—to be minimized with a glide wax—and static friction—to be achieved with a grip wax. Both types of wax are designed to be matched with the varying properties of snow, including crystal type and size, and moisture content of the snow surface, which vary with temperature and the temperature history of the snow. Glide wax is selected to minimize sliding friction for both alpine and cross-country skiing. Grip wax provides on-snow traction for cross-country skiers, as they stride forward using classic technique.

Normal force

In mechanics, the normal force is the component of a contact force that is perpendicular to the surface that an object contacts. For example, the surface of a floor or table that prevents an object from falling. In this instance normal is used in the geometric sense and means perpendicular, as opposed the common language use of normal meaning common or expected. For example, a person standing still on flat ground is supported by a ground reaction force that consists of only a normal force. If the person stands on a slope and does not slide down it, then the total ground reaction force can be divided into two components: a normal force perpendicular to the ground and a frictional force parallel to the ground. In another common situation, if an object hits a surface with some speed, and the surface can withstand it, the normal force provides for a rapid deceleration, which will depend on the flexibility of the surface and the object.

Rolling type of motion that combines rotation and translation of an object with respect to a surface with which it is in contact

Rolling is a type of motion that combines rotation and translation of that object with respect to a surface, such that, if ideal conditions exist, the two are in contact with each other without sliding.

Rolling resistance rolling friction or rolling drag, is the force resisting the motion when a body (such as a ball, tire, or wheel) rolls on a surface

Rolling resistance, sometimes called rolling friction or rolling drag, is the force resisting the motion when a body rolls on a surface. It is mainly caused by non-elastic effects; that is, not all the energy needed for deformation of the wheel, roadbed, etc. is recovered when the pressure is removed. Two forms of this are hysteresis losses, and permanent (plastic) deformation of the object or the surface. Another cause of rolling resistance lies in the slippage between the wheel and the surface, which dissipates energy. Note that only the last of these effects involves friction, therefore the name "rolling friction" is to an extent a misnomer.

Nanotribology is the branch of tribology that studies friction, wear, adhesion and lubrication phenomena at the nanoscale, where atomic interactions and quantum effects are not negligible. The aim of this discipline is characterizing and modifying surfaces for both scientific and technological purposes.

When two objects touch, only a certain portion of their surface areas will be in contact with each other. This area of true contact, most often constitutes only a very small fraction of the apparent or nominal contact area. In relation to two contacting objects, the term Contact area refers to the fraction of the nominal area that consists of atoms of one object in true contact with the atoms of the other object. Because objects are never perfectly flat due to asperities, the actual contact area is usually much less than the contact area apparent on a macroscopic scale. Contact area may depend on the normal force between the two objects due to deformation.

The stick-slip phenomenon, also known as the slip-stick phenomenon or simply stick-slip, is the spontaneous jerking motion that can occur while two objects are sliding over each other.

Coulomb damping is a type of constant mechanical damping in which energy is absorbed via sliding friction. The friction generated by the relative motion of the two surfaces that press against each other is a source of energy dissipation. In general, damping is the dissipation of energy from a vibrating system where the kinetic energy is converted into heat by the friction. Coulomb damping is a common damping mechanism that occurs in machinery.

Contact mechanics

Contact mechanics is the study of the deformation of solids that touch each other at one or more points. A central distinction in contact mechanics is between stresses acting perpendicular to the contacting bodies' surfaces and frictional stresses acting tangentially between the surfaces. This page focuses mainly on the normal direction, i.e. on frictionless contact mechanics. Frictional contact mechanics is discussed separately. Normal stresses are caused by applied forces and by the adhesion present on surfaces in close contact even if they are clean and dry.

Frictionless plane

The frictionless plane is a concept from the writings of Galileo Galilei. In his 1608 The Two New Sciences, Galileo presented a formula that predicted the motion of an object moving down an inclined plane. His formula was based upon his past experimentation with free-falling bodies. However, his model was not based upon experimentation with objects moving down an inclined plane, but from his conceptual modeling of the forces acting upon the object. Galileo understood the mechanics of the inclined plane as the combination of horizontal and vertical vectors; the result of gravity acting upon the object, diverted by the slope of the plane.

Gyroscopic exercise tool trademark

A gyroscopic exercise tool is a device used to exercise the wrist as part of physical therapy or in order to build palm, forearm and finger strength. It can also be used as a unique demonstration of some aspects of rotational dynamics. The device consists of a tennis ball-sized plastic or metal shell around a free-spinning mass, which is started with a short rip string. Once the gyroscope inside is going fast enough, a person holding the device can accelerate the spinning mass to high revolution rates by moving the wrist in a circular motion.

In mechanics and geodynamics, a critical taper is the equilibrium angle made by the far end of a wedge-shaped agglomeration of material that is being pushed by the near end. The angle of the critical taper is a function of the material properties within the wedge, pore fluid pressure, and strength of the fault along the base of the wedge.

In the context of classical mechanics simulations and physics engines employed within video games, collision response deals with models and algorithms for simulating the changes in the motion of two solid bodies following collision and other forms of contact.

Belt friction is a term describing the friction forces between a belt and a surface, such as a belt wrapped around a bollard. When one end of the belt is being pulled only part of this force is transmitted to the other end wrapped about a surface. The friction force increases with the amount of wrap about a surface and makes it so the tension in the belt can be different at both ends of the belt. Belt friction can be modeled by the Belt friction equation.

Contact mechanics is the study of the deformation of solids that touch each other at one or more points. This can be divided into compressive and adhesive forces in the direction perpendicular to the interface, and frictional forces in the tangential direction. Frictional contact mechanics is the study of the deformation of bodies in the presence of frictional effects, whereas frictionless contact mechanics assumes the absence of such effects.


  1. 1 2 3 Hanaor, D.; Gan, Y.; Einav, I. (2016). "Static friction at fractal interfaces". Tribology International. 93: 229–238. doi:10.1016/j.triboint.2015.09.016.
  2. "Friction". Merriam-Webster Dictionary .
  3. 1 2 Beer, Ferdinand P.; Johnston, E. Russel, Jr. (1996). Vector Mechanics for Engineers (Sixth ed.). McGraw-Hill. p. 397. ISBN   978-0-07-297688-5.
  4. 1 2 Meriam, J. L.; Kraige, L. G. (2002). Engineering Mechanics (fifth ed.). John Wiley & Sons. p. 328. ISBN   978-0-471-60293-4.
  5. Ruina, Andy; Pratap, Rudra (2002). Introduction to Statics and Dynamics (PDF). Oxford University Press. p. 713.
  6. Hibbeler, R. C. (2007). Engineering Mechanics (Eleventh ed.). Pearson, Prentice Hall. p. 393. ISBN   978-0-13-127146-3.
  7. Soutas-Little, Robert W.; Inman, Balint (2008). Engineering Mechanics. Thomson. p. 329. ISBN   978-0-495-29610-2.
  8. 1 2 Chatterjee, Sudipta (2008). Tribological Properties of Pseudo-elastic Nickel-titanium (Thesis). University of California. pp. 11–12. ISBN   9780549844372 via ProQuest. Classical Greek philosophers like Aristotle, Pliny the Elder and Vitruvius wrote about the existence of friction, the effect of lubricants and the advantages of metal bearings around 350 B.C.
  9. Fishbane, Paul M.; Gasiorowicz, Stephen; Thornton, Stephen T. (1993). Physics for Scientists and Engineers. I (Extended ed.). Englewood Cliffs, New Jersey: Prentice Hall. p. 135. ISBN   978-0-13-663246-7. Themistius first stated around 350 B.C.[ sic ] that kinetic friction is weaker than the maximum value of static friction.
  10. Hecht, Eugene (2003). Physics: Algebra/Trig (3rd ed.). Cengage Learning. ISBN   9780534377298.
  11. Sambursky, Samuel (2014). The Physical World of Late Antiquity. Princeton University Press. pp. 65–66. ISBN   9781400858989.
  12. 1 2 3 4 5 Dowson, Duncan (1997). History of Tribology (2nd ed.). Professional Engineering Publishing. ISBN   978-1-86058-070-3.
  13. 1 2 3 Armstrong-Hélouvry, Brian (1991). Control of machines with friction. USA: Springer. p. 10. ISBN   978-0-7923-9133-3.
  14. 1 2 van Beek, Anton. "History of Science Friction". Retrieved 2011-03-24.
  15. Hutchings, Ian M. (2016). "Leonardo da Vinci's studies of friction" (PDF). Wear. 360-361: 51–66. doi:10.1016/j.wear.2016.04.019.
  16. Hutchings, Ian M. (2016-08-15). "Leonardo da Vinci's studies of friction". Wear. 360–361: 51–66. doi:10.1016/j.wear.2016.04.019.
  17. Kirk, Tom (July 22, 2016). "Study reveals Leonardo da Vinci's 'irrelevant' scribbles mark the spot where he first recorded the laws of friction". Retrieved 2016-07-26.
  18. Popova, Elena; Popov, Valentin L. (2015-06-01). "The research works of Coulomb and Amontons and generalized laws of friction". Friction. 3 (2): 183–190. doi:10.1007/s40544-015-0074-6.
  19. Forest de Bélidor, Bernard. "Richtige Grund-Sätze der Friction-Berechnung" ("Correct Basics of Friction Calculation"), 1737, (in German)
  20. "Leonhard Euler". Friction Module. Nano World. 2002. Retrieved 2011-03-25.
  21. Goedecke, Andreas (2014). Transient Effects in Friction: Fractal Asperity Creep. Springer Science and Business Media. p. 3. ISBN   978-3709115060.
  22. Popova, Elena; Popov, Valentin L. (2015-06-01). "The research works of Coulomb and Amontons and generalized laws of friction". Friction. 3 (2): 183–190. doi:10.1007/s40544-015-0074-6.
  23. Fleeming Jenkin & James Alfred Ewing (1877) "On Friction between Surfaces moving at Low Speeds", Philosophical Magazine Series 5, volume 4, pp 308–10; link from Biodiversity Heritage Library
  24. Sosnovskiy, L. A. Methods and Main Results of Tribo-Fatigue Tests / L. A. Sosnovskiy, A. V. Bogdanovich, O. M. Yelovoy, S. A. Tyurin, V. V. Komissarov, S. S. Sherbakov // International Journal of Fatigue. – 2014. – V. 66. – P. 207–219.
  25. Air Brake Association (1921). The Principles and Design of Foundation Brake Rigging. Air brake association. p. 5.
  26. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 "Friction Factors - Coefficients of Friction" . Retrieved 2015-04-27.
  27. 1 2 3 4 "Mechanical Engineering Department: Tribology Introduction". 2016-03-11.
  28. Ferreira, Vanderlei; Yoshimura, Humberto Naoyuki; Sinatora, Amilton (2012-08-30). "Ultra-low friction coefficient in alumina–silicon nitride pair lubricated with water". Wear. 296 (1–2): 656–659. doi:10.1016/j.wear.2012.07.030.
  29. Tian, Y.; Bastawros, A. F.; Lo, C. C. H.; Constant, A. P.; Russell, A.M.; Cook, B. A. (2003). "Superhard self-lubricating AlMgB[sub 14] films for microelectromechanical devices". Applied Physics Letters. 83 (14): 2781. Bibcode:2003ApPhL..83.2781T. doi:10.1063/1.1615677.
  30. Kleiner, Kurt (2008-11-21). "Material slicker than Teflon discovered by accident" . Retrieved 2008-12-25.
  31. Higdon, C.; Cook, B.; Harringa, J.; Russell, A.; Goldsmith, J.; Qu, J.; Blau, P. (2011). "Friction and wear mechanisms in AlMgB14-TiB2 nanocoatings". Wear. 271 (9–10): 2111–2115. doi:10.1016/j.wear.2010.11.044.
  32. 1 2 3 4 5 Coefficient of Friction Archived March 8, 2009, at the Wayback Machine .
  33. 1 2 "Coefficients of Friction of Human Joints" . Retrieved 2015-04-27.
  34. 1 2 3 4 5 6 7 8 9 "The Engineering Toolbox: Friction and Coefficients of Friction" . Retrieved 2008-11-23.
  35. Dienwiebel, Martin; et al. (2004). "Superlubricity of Graphite" (PDF). Phys. Rev. Lett. 92 (12): 126101. Bibcode:2004PhRvL..92l6101D. doi:10.1103/PhysRevLett.92.126101.
  36. multi-scale origins of static friction 2016
  37. Greenwood J.A. and JB Williamson (1966). "Contact of nominally flat surfaces". Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 295 (1442).
  38. Bhavikatti, S. S.; K. G. Rajashekarappa (1994). Engineering Mechanics. New Age International. p. 112. ISBN   978-81-224-0617-7 . Retrieved 2007-10-21.
  39. Sheppard, Sheri; Tongue, Benson H.; Anagnos, Thalia (2005). Statics: Analysis and Design of Systems in Equilibrium. Wiley and Sons. p. 618. ISBN   978-0-471-37299-8. In general, for given contacting surfaces, μk < μs
  40. Meriam, James L.; Kraige, L. Glenn; Palm, William John (2002). Engineering Mechanics: Statics. Wiley and Sons. p. 330. ISBN   978-0-471-40646-4. Kinetic friction force is usually somewhat less than the maximum static friction force.
  41. Feynman, Richard P.; Leighton, Robert B.; Sands, Matthew (1964). "The Feynman Lectures on Physics, Vol. I, p. 12-5". Addison-Wesley. Retrieved 2009-10-16.
  42. 1 2 Persson, B. N.; Volokitin, A. I (2002). "Theory of rubber friction: Nonstationary sliding" (PDF). Physical Review B. 65 (13): 134106. Bibcode:2002PhRvB..65m4106P. doi:10.1103/PhysRevB.65.134106.
  43. Beatty, William J. "Recurring science misconceptions in K-6 textbooks" . Retrieved 2007-06-08.
  44. Persson, B. N. J. (2000). Sliding friction: physical principles and applications. Springer. ISBN   978-3-540-67192-3 . Retrieved 2016-01-23.
  45. Makkonen, L (2012). "A thermodynamic model of sliding friction". AIP Advances. 2 (1): 012179. Bibcode:2012AIPA....2a2179M. doi:10.1063/1.3699027.
  46. Nichols, Edward Leamington; Franklin, William Suddards (1898). The Elements of Physics. 1. Macmillan. p. 101.
  47. Ternes, Markus; Lutz, Christopher P.; Hirjibehedin, Cyrus F.; Giessibl, Franz J.; Heinrich, Andreas J. (2008-02-22). "The Force Needed to Move an Atom on a Surface" (PDF). Science . 319 (5866): 1066–1069. Bibcode:2008Sci...319.1066T. doi:10.1126/science.1150288. PMID   18292336.
  48. 1 2 Deng, Zhao; et al. (October 14, 2012). "Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale". Nature . 11 (12): 1032–7. Bibcode:2012NatMa..11.1032D. doi:10.1038/nmat3452. PMID   23064494. Lay summary R&D Magazine (October 17, 2012).
  49. Haslinger, J.; Nedlec, J.C. (1983). "Approximation of the Signorini problem with friction, obeying the Coulomb law" (PDF). Mathematical Methods in the Applied Sciences. 5 (1): 422–437. Bibcode:1983MMAS....5..422H. doi:10.1002/mma.1670050127. hdl:10338.dmlcz/104086.
  50. Alart, P.; Curnier, A. (1991). "A mixed formulation for frictional contact problems prone to Newton like solution method". Computer Methods in Applied Mechanics and Engineering. 92 (3): 353–375. Bibcode:1991CMAME..92..353A. doi:10.1016/0045-7825(91)90022-X.
  51. Acary, V.; Cadoux, F.; Lemaréchal, C.; Malick, J. (2011). "A formulation of the linear discrete Coulomb friction problem via convex optimization". Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik. 91 (2): 155–175. Bibcode:2011ZaMM...91..155A. doi:10.1002/zamm.201000073.
  52. De Saxcé, G.; Feng, Z.-Q. (1998). "The bipotential method: A constructive approach to design the complete contact law with friction and improved numerical algorithms". Mathematical and Computer Modelling. 28 (4): 225–245. doi:10.1016/S0895-7177(98)00119-8.
  53. Simo, J.C.; Laursen, T.A. (1992). "An augmented lagrangian treatment of contact problems involving friction". Computers and Structures. 42 (2): 97–116. doi:10.1016/0045-7949(92)90540-G.
  54. Acary, V.; Brogliato, B. (2008). Numerical Methods for Nonsmooth Dynamical Systems. Applications in Mechanics and Electronics. 35. Springer Verlag Heidelberg.
  55. Bigoni, D. (2012-07-30). Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, 2012. ISBN   9781107025417.
  56. Adams, G. G. (1995). "Self-excited oscillations of two elastic half-spaces sliding with a constant coefficient of friction". Journal of Applied Mechanics. 62 (4): 867–872. Bibcode:1995JAM....62..867A. doi:10.1115/1.2896013.
  57. Martins, J.A., Faria, L.O. & Guimarães, J. (1995). "Dynamic surface solutions in linear elasticity and viscoelasticity with frictional boundary conditions". Journal of Vibration and Acoustics. 117 (4): 445–451. doi:10.1115/1.2874477.
  58. M, Nosonovsky; G., Adams G. (2004). "Vibration and stability of frictional sliding of two elastic bodies with a wavy contact interface". Journal of Applied Mechanics. 71 (2): 154–161. Bibcode:2004JAM....71..154N. doi:10.1115/1.1653684.
  59. J., Flint; J., Hultén (2002). "Lining-deformation-induced modal coupling as squeal generator in a distributed parameter disk brake model". J. Sound and Vibration. 254 (1): 1–21. Bibcode:2002JSV...254....1F. doi:10.1006/jsvi.2001.4052.
  60. M., Kröger; M., Neubauer; K., Popp (2008). "Experimental investigation on the avoidance of self-excited vibrations". Phil. Trans. R. Soc. A. 366 (1866): 785–810. Bibcode:2008RSPTA.366..785K. doi:10.1098/rsta.2007.2127. PMID   17947204.
  61. R., Rice, J.; L., Ruina, A. (1983). "Stability of Steady Frictional Slipping" (PDF). Journal of Applied Mechanics. 50 (2): 343–349. Bibcode:1983JAM....50..343R. CiteSeerX . doi:10.1115/1.3167042.
  62. Bigoni, D.; Noselli, G. (2011). "Experimental evidence of flutter and divergence instabilities induced by dry friction". Journal of the Mechanics and Physics of Solids. 59 (10): 2208–2226. Bibcode:2011JMPSo..59.2208B. CiteSeerX . doi:10.1016/j.jmps.2011.05.007.
  63. Nosonovsky, Michael (2013). Friction-Induced Vibrations and Self-Organization: Mechanics and Non-Equilibrium Thermodynamics of Sliding Contact. CRC Press. p. 333. ISBN   978-1466504011.
  64. Einstein, A. (1909). On the development of our views concerning the nature and constitution of radiation. Translated in: The Collected Papers of Albert Einstein, vol. 2 (Princeton University Press, Princeton, 1989). Princeton, NJ: Princeton University Press. p. 391.
  65. Silliman, Benjamin (1871) Principles of Physics, Or Natural Philosophy, Ivison, Blakeman, Taylor & company publishers
  66. Butt, Hans-Jürgen; Graf, Karlheinz and Kappl, Michael (2006) Physics and Chemistry of Interfaces, Wiley, ISBN   3-527-40413-9
  67. Hogan, C. Michael (1973). "Analysis of highway noise". Water, Air, & Soil Pollution. 2 (3): 387–392. Bibcode:1973WASP....2..387H. doi:10.1007/BF00159677.
  68. Valentin L. Popov, Lars Voll, Stephan Kusche, Qiang Li, Svetlana V. Rozhkova (2018). "Generalized master curve procedure for elastomer friction taking into account dependencies on velocity, temperature and normal force". Tribology International. 120: 376–380. arXiv: 1604.03407 . doi:10.1016/j.triboint.2017.12.047.CS1 maint: multiple names: authors list (link)
  69. Den Hartog, J. P. (1961). Mechanics. Courier Dover Publications. p. 142. ISBN   978-0-486-60754-2.
  70. Leonard, William J (2000). Minds-on Physics. Kendall/Hunt. p. 603. ISBN   978-0-7872-3932-9.
  71. Bayer, Raymond George (2004). Mechanical wear. CRC Press. pp. 1, 2. ISBN   978-0-8247-4620-9 . Retrieved 2008-07-07.
  72. "How Do Car Brakes Work?". Wonderopolis. Retrieved November 4, 2018.
  73. Iskander, R and Stevens, A. "Effectiveness of the Application of High Friction Surfacing-Crash-Reduction.pdf" (PDF). Archived from the original (PDF) on 2017-09-03. Retrieved 2017-09-03.CS1 maint: multiple names: authors list (link)
  74. "How Does Lighting A Match Work?". Curiosity. November 11, 2015. Retrieved November 4, 2018.