A ball bearing is a type of rolling-element bearing that uses balls to maintain the separation between the bearing races.
The purpose of a ball bearing is to reduce rotational friction and support radial and axial loads. It achieves this by using at least two races to contain the balls and transmit the loads through the balls. In most applications, one race is stationary and the other is attached to the rotating assembly (e.g., a hub or shaft). As one of the bearing races rotates it causes the balls to rotate as well. Because the balls are rolling, they have a much lower coefficient of friction than if two flat surfaces were sliding against each other.
Ball bearings tend to have lower load capacity for their size than other kinds of rolling-element bearings due to the smaller contact area between the balls and races. However, they can tolerate some misalignment of the inner and outer races.
Common ball bearing designs include angular contact, axial, deep-groove, and preloaded pairs. The balls in ball bearings can also be configured in various ways. Ball bearings are used in a wide range of applications, some of which include skateboards and centrifugal pumps.
Although bearings had been developed since ancient times, the first modern recorded patent on ball bearings was awarded to Philip Vaughan, a Welsh inventor and ironmaster who created the first design for a ball bearing in Carmarthen in 1794. His was the first modern ball-bearing design, with the ball running along a groove in the axle assembly. [1]
Jules Suriray, a Parisian bicycle mechanic, designed the first radial style ball bearing in 1869, [2] which was then fitted to the winning bicycle ridden by James Moore in the world's first bicycle road race, Paris-Rouen, in November 1869. [3]
There are several common designs of ball bearing, each offering various performance trade-offs. They can be made from many different materials, including stainless steel, chrome steel, and ceramic (silicon nitride, Si3N4). A hybrid ball bearing is a bearing with ceramic balls and metal races.
This section relies largely or entirely on a single source .(June 2023) |
This section may contain an excessive amount of intricate detail that may interest only a particular audience.(June 2023) |
The calculated life for a bearing is based on the load it carries and its operating speed. The industry standard usable bearing lifespan is inversely proportional to the bearing load cubed.[ citation needed ] Nominal maximum load of a bearing, is for a lifespan of 1 million rotations, which at 50 Hz (i.e., 3000 RPM) is a lifespan of 5.5 working hours. 90% of bearings of that type have at least that lifespan, and 50% of bearings have a lifespan at least 5 times as long. [7]
The industry standard life calculation is based upon the work of Lundberg and Palmgren performed in 1947. The formula assumes the life to be limited by metal fatigue and that the life distribution can be described by a Weibull distribution. Many variations of the formula exist that include factors for material properties, lubrication, and loading. Factoring for loading may be viewed as a tacit admission that modern materials demonstrate a different relationship between load and life than Lundberg and Palmgren determined . [7]
If a bearing is not rotating, maximum load is determined by force that causes plastic deformation of elements or raceways. The indentations caused by the elements can concentrate stresses and generate cracks at the components. Maximum load for not or very slowly rotating bearings is called "static" maximum load. [7]
Also, if a bearing is not rotating, oscillating forces on the bearing can cause impact damage to the bearing race or the rolling elements, known as brinelling. A second lesser form called false brinelling occurs if the bearing only rotates across a short arc and pushes lubricant out away from the rolling elements.
For a rotating bearing, the dynamic load capacity indicates the load to which the bearing endures 1,000,000 cycles.
If a bearing is rotating, but experiences heavy load that lasts shorter than one revolution, static max load must be used in computations, since the bearing does not rotate during the maximum load. [7]
If a sideways torque is applied to a deep groove radial bearing, an uneven force in the shape of an ellipse is applied on the outer ring by the rolling elements, concentrating in two regions on opposite sides of the outer ring. If the outer ring is not strong enough, or if it is not sufficiently braced by the supporting structure, the outer ring will deform into an oval shape from the sideways torque stress, until the gap is large enough for the rolling elements to escape. The inner ring then pops out and the bearing structurally collapses.
A sideways torque on a radial bearing also applies pressure to the cage that holds the rolling elements at equal distances, due to the rolling elements trying to all slide together at the location of highest sideways torque. If the cage collapses or breaks apart, the rolling elements group together, the inner ring loses support, and may pop out of the center.
In general, maximum load on a ball bearing is proportional to outer diameter of the bearing times the width of the bearing (where width is measured in direction of axle). [7]
Bearings have static load ratings. These are based on not exceeding a certain amount of plastic deformation in the raceway. These ratings may be exceeded by a large amount for certain applications.
For a bearing to operate properly, it needs to be lubricated. In most cases the lubricant is based on elastohydrodynamic effect (by oil or grease) but working at extreme temperatures dry lubricated bearings are also available.
For a bearing to have its nominal lifespan at its nominal maximum load, it must be lubricated with a lubricant (oil or grease) that has at least the minimum dynamic viscosity (usually denoted with the Greek letter ) recommended for that bearing. [7]
The recommended dynamic viscosity is inversely proportional to diameter of bearing. [7]
The recommended dynamic viscosity decreases with rotating frequency. As a rough indication: for less than 3000 RPM, recommended viscosity increases with factor 6 for a factor 10 decrease in speed, and for more than 3000 RPM, recommended viscosity decreases with factor 3 for a factor 10 increase in speed. [7]
For a bearing where average of outer diameter of bearing and diameter of axle hole is 50 mm, and that is rotating at 3000 RPM, recommended dynamic viscosity is 12 mm2/s. [7]
Note that dynamic viscosity of oil varies strongly with temperature: a temperature increase of 50–70 °C causes the viscosity to decrease by factor 10. [7]
If the viscosity of lubricant is higher than recommended, lifespan of bearing increases, roughly proportional to square root of viscosity. If the viscosity of the lubricant is lower than recommended, the lifespan of the bearing decreases, and by how much depends on which type of oil being used. For oils with EP ('extreme pressure') additives, the lifespan is proportional to the square root of dynamic viscosity, just as it was for too high viscosity, while for ordinary oils lifespan is proportional to the square of the viscosity if a lower-than-recommended viscosity is used. [7]
Lubrication can be done with a grease, which has advantages that grease is normally held within the bearing releasing the lubricant oil as it is compressed by the balls. It provides a protective barrier for the bearing metal from the environment, but has disadvantages that this grease must be replaced periodically, and maximum load of bearing decreases (because if bearing gets too warm, grease melts and runs out of bearing). Time between grease replacements decreases very strongly with diameter of bearing: for a 40 mm bearing, grease should be replaced every 5000 working hours, while for a 100 mm bearing it should be replaced every 500 working hours. [7]
Lubrication can also be done with an oil, which has advantage of higher maximum load, but needs some way to keep oil in bearing, as it normally tends to run out of it. For oil lubrication it is recommended that for applications where oil does not become warmer than 50 °C, oil should be replaced once a year, while for applications where oil does not become warmer than 100 °C, oil should be replaced 4 times per year. For car engines, oil becomes 100 °C but the engine has an oil filter to maintain oil quality; therefore, the oil is usually changed less frequently than the oil in bearings. [7]
If the bearing is used under oscillation, oil lubrication should be preferred. [8] If grease lubrication is necessary, the composition should be adapted to the parameters that occur. Greases with a high bleeding rate and low base oil viscosity should be preferred if possible. [9]
Most bearings are meant for supporting loads perpendicular to axle ("radial loads"). Whether they can also bear axial loads, and if so, how much, depends on the type of bearing. Thrust bearings (commonly found on lazy susans) are specifically designed for axial loads. [7]
For single-row deep-groove ball bearings, SKF's documentation says that maximum axial load is circa 50% of maximum radial load, but it also says that "light" and/or "small" bearings can take axial loads that are 25% of maximum radial load. [7]
For single-row edge-contact ball bearings, axial load can be about 2 times max radial load, and for cone-bearings maximum axial load is between 1 and 2 times maximum radial load. [7]
Often Conrad-style ball bearings will exhibit contact ellipse truncation under axial load. That means that either the ID of the outer ring is large enough, or the OD of the inner ring is small enough, so as to reduce the area of contact between the balls and raceway. When this is the case, it can significantly increase the stresses in the bearing, often invalidating rules of thumb regarding relationships between radial and axial load capacity. With construction types other than Conrad, one can further decrease the outer ring ID and increase the inner ring OD to guard against this.
If both axial and radial loads are present, they can be added vectorially, to result in the total load on bearing, which in combination with nominal maximum load can be used to predict lifespan. [7] However, in order to correctly predict the rating life of ball bearings the ISO/TS 16281 should be used with the help of a calculation software.
The part of a bearing that rotates (either axle hole or outer circumference) must be fixed, while for a part that does not rotate this is not necessary (so it can be allowed to slide). If a bearing is loaded axially, both sides must be fixed. [7]
If an axle has two bearings, and temperature varies, axle shrinks or expands, therefore it is not admissible for both bearings to be fixed on both their sides, since expansion of axle would exert axial forces that would destroy these bearings. Therefore, at least one of the bearings must be able to slide. [7]
A 'freely sliding fit' is one where there is at least a 4 μm clearance, presumably because surface-roughness of a surface made on a lathe is normally between 1.6 and 3.2 μm. [7]
Bearings can withstand their maximum load only if the mating parts are properly sized. Bearing manufacturers supply tolerances for the fit of the shaft and the housing so that this can be achieved. The material and hardness may also be specified. [7]
Fittings that are not allowed to slip are made to diameters that prevent slipping and consequently the mating surfaces cannot be brought into position without force. For small bearings this is best done with a press because tapping with a hammer damages both bearing and shaft, while for large bearings the necessary forces are so great that there is no alternative to heating one part before fitting, so that thermal expansion allows a temporary sliding fit. [7]
If a shaft is supported by two bearings, and the center-lines of rotation of these bearings are not the same, then large forces are exerted on the bearing, which may destroy it. Some very small amount of misalignment is acceptable, and how much depends on type of bearing. For bearings that are specifically made to be 'self-aligning', acceptable misalignment is between 1.5 and 3 degrees of arc. Bearings that are not designed to be self-aligning can accept misalignment of only 2–10 minutes of arc (0.033-0.166 degrees) . [7]
In general, ball bearings are used in most applications that involve moving parts. Some of these applications have specific features and requirements:
The ball size increases as the series increases, for any given inner diameter or outer diameter (not both). The larger the ball the greater the load carrying capacity. Series 200 and 300 are the most common. [4]
Fluid bearings are bearings in which the load is supported by a thin layer of rapidly moving pressurized liquid or gas between the bearing surfaces. Since there is no contact between the moving parts, there is no sliding friction, allowing fluid bearings to have lower friction, wear and vibration than many other types of bearings. Thus, it is possible for some fluid bearings to have near-zero wear if operated correctly.
A bearing is a machine element that constrains relative motion to only the desired motion and reduces friction between moving parts. The design of the bearing may, for example, provide for free linear movement of the moving part or for free rotation around a fixed axis; or, it may prevent a motion by controlling the vectors of normal forces that bear on the moving parts. Most bearings facilitate the desired motion by minimizing friction. Bearings are classified broadly according to the type of operation, the motions allowed, or the directions of the loads (forces) applied to the parts.
A plain bearing, or more commonly sliding contact bearing and slide bearing, is the simplest type of bearing, comprising just a bearing surface and no rolling elements. Therefore, the part of the shaft in contact with the bearing slides over the bearing surface. The simplest example of a plain bearing is a shaft rotating in a hole. A simple linear bearing can be a pair of flat surfaces designed to allow motion; e.g., a drawer and the slides it rests on or the ways on the bed of a lathe.
In mechanical engineering, a rolling-element bearing, also known as a rolling bearing, is a bearing which carries a load by placing rolling elements between two concentric, grooved rings called races. The relative motion of the races causes the rolling elements to roll with very little rolling resistance and with little sliding.
A constant-velocity joint is a mechanical coupling which allows the shafts to rotate freely and compensates for the angle between the two shafts, within a certain range, to maintain the same velocity.
A thrust bearing is a particular type of rotary bearing. Like other bearings they permanently rotate between parts, but they are designed to support a predominantly axial load.
Grease is a solid or semisolid lubricant formed as a dispersion of thickening agents in a liquid lubricant. Grease generally consists of a soap emulsified with mineral or vegetable oil.
Tapered roller bearings are rolling element bearings that can support axial forces as well as radial forces.
A linear-motion bearing or linear slide is a bearing designed to provide free motion in one direction. There are many different types of linear motion bearings.
A ball screw is a mechanical linear actuator that translates rotational motion to linear motion with little friction. A threaded shaft provides a helical raceway for ball bearings which act as a precision screw. As well as being able to apply or withstand high thrust loads, they can do so with minimum internal friction. They are made to close tolerances and are therefore suitable for high-precision applications. The ball assembly acts as the nut while the threaded shaft is the screw.
The rolling-elements of a rolling-element bearing ride on races. The large race that goes into a bore is called the outer race, and the small race that the shaft rides in is called the inner race.
A wire race bearing is a rolling-element bearing, where the balls or rollers run on races resembling loops of wire. Roller bearings may use just two races, but ball bearings typically use three or four races. Wire race bearings can be large yet lightweight and with small profile and good precision. Wire races have little intrinsic structure and must be adequately supported by the bearing housing. Balls, rollers or even cross rollers are used as rolling elements. Due to the design wire race bearings are commonly called '4-point-contact' bearings.
A slewing bearing or slew[ing] ring is a rotational rolling-element bearing that typically supports a heavy but slow-turning or slowly-oscillating loads in combination, often a horizontal platform such as a conventional crane, a swing yarder, or the wind-facing platform of a horizontal-axis (yaw) windmill. In other orientations they are used in materials handling grapples, forklift attachments, welding turnover jigs and so on.
A cam follower, also known as a track follower, is a specialized type of roller or needle bearing designed to follow cam lobe profiles. Cam followers come in a vast array of different configurations, however the most defining characteristic is how the cam follower mounts to its mating part; stud style cam followers use a stud while the yoke style has a hole through the middle.
The yaw bearing is the most crucial and cost intensive component of a yaw system found on modern horizontal axis wind turbines. The yaw bearing must cope with enormous static and dynamic loads and moments during the wind turbine operation, and provide smooth rotation characteristics for the orientation of the nacelle under all weather conditions. It has also to be corrosion and wear resistant and extremely long lasting. It should last for the service life of the wind turbine) while being cost effective.
A roller screw, also known as a planetary roller screw or satellite roller screw, is a low-friction precision screw-type actuator, a mechanical device for converting rotational motion to linear motion, or vice versa. Planetary roller screws are used as the actuating mechanism in many electromechanical linear actuators. Due to its complexity, the roller screw is a relatively expensive actuator, but may be suitable for high-precision, high-speed, heavy-load, long-life, and heavy-use applications.
Spiral groove bearings are self-acting, or hydrodynamic bearings used to reduce friction and wear without the use of pressurized lubricants. They have this ability due to special patterns of grooves. Spiral groove bearings are self-acting because their own rotation builds up the pressure needed to separate the bearing surfaces. For this reason, they are also contactless bearings.
A spherical roller bearing is a rolling-element bearing that permits rotation with low friction, and permits angular misalignment. Typically these bearings support a rotating shaft in the bore of the inner ring that may be misaligned in respect to the outer ring. The misalignment is possible due to the spherical internal shape of the outer ring and spherical rollers. Despite what their name may imply, spherical roller bearings are not truly spherical in shape. The rolling elements of spherical roller bearings are mainly cylindrical in shape, but have a profile that makes them appear like cylinders that have been slightly over-inflated.
A spherical roller thrust bearing is a rolling-element bearing of thrust type that permits rotation with low friction, and permits angular misalignment. The bearing is designed to take radial loads, and heavy axial loads in one direction. Typically these bearings support a rotating shaft in the bore of the shaft washer that may be misaligned in respect to the housing washer. The misalignment is possible due to the spherical internal shape of the house washer.
DN factor, also called DN Value, is a number that is used to determine the correct base oil viscosity for the lubrication of various types of bearings.
A novel antifriction device that Harrison developed for H-3 survives to the present day – ...caged ball bearings.