Structural load

Last updated

A structural load or structural action is a force, deformation, or acceleration applied to structural elements. [1] [2] A load causes stress, deformation, and displacement in a structure. Structural analysis, a discipline in engineering, analyzes the effects of loads on structures and structural elements. Excess load may cause structural failure, so this should be considered and controlled during the design of a structure. Particular mechanical structures—such as aircraft, satellites, rockets, space stations, ships, and submarines—are subject to their own particular structural loads and actions. [3] Engineers often evaluate structural loads based upon published regulations, contracts, or specifications. Accepted technical standards are used for acceptance testing and inspection.

Contents

Types

Dead loads are static forces that are relatively constant for an extended time. They can be in tension or compression. The term can refer to a laboratory test method or to the normal usage of a material or structure.

Live loads are usually variable or moving loads. These can have a significant dynamic element and may involve considerations such as impact, momentum, vibration, slosh dynamics of fluids, etc.

An impact load is one whose time of application on a material is less than one-third of the natural period of vibration of that material.

Cyclic loads on a structure can lead to fatigue damage, cumulative damage, or failure. These loads can be repeated loadings on a structure or can be due to vibration.

Loads on architectural and civil engineering structures

Structural loads are an important consideration in the design of buildings. Building codes require that structures be designed and built to safely resist all actions that they are likely to face during their service life, while remaining fit for use. [4] Minimum loads or actions are specified in these building codes for types of structures, geographic locations, usage and building materials. [5] Structural loads are split into categories by their originating cause. In terms of the actual load on a structure, there is no difference between dead or live loading, but the split occurs for use in safety calculations or ease of analysis on complex models.

To meet the requirement that design strength be higher than maximum loads, building codes prescribe that, for structural design, loads are increased by load factors. These load factors are, roughly, a ratio of the theoretical design strength to the maximum load expected in service. They are developed to help achieve the desired level of reliability of a structure [6] based on probabilistic studies that take into account the load's originating cause, recurrence, distribution, and static or dynamic nature. [7]

Dead load

Dead load DeadLoad.svg
Dead load

The dead load includes loads that are relatively constant over time, including the weight of the structure itself, and immovable fixtures such as walls, plasterboard or carpet. The roof is also a dead load. Dead loads are also known as permanent or static loads. Building materials are not dead loads until constructed in permanent position. [8] [9] [10] IS875(part 1)-1987 give unit weight of building materials, parts, components.

Live load

Imposed load (live load) IMPOSED lOAD.jpg
Imposed load (live load)

Live loads, or imposed loads, are temporary, of short duration, or a moving load. These dynamic loads may involve considerations such as impact, momentum, vibration, slosh dynamics of fluids and material fatigue.

Live loads, sometimes also referred to as probabilistic loads, include all the forces that are variable within the object's normal operation cycle not including construction or environmental loads.

Roof and floor live loads are produced during maintenance by workers, equipment and materials, and during the life of the structure by movable objects, such as planters and people.

Bridge live loads are produced by vehicles traveling over the deck of the bridge.

Environmental loads

Live snow load SNOW LOAD.jpg
Live snow load

Environmental loads are structural loads caused by natural forces such as wind, rain, snow, earthquake or extreme temperatures.

Other loads

Engineers must also be aware of other actions that may affect a structure, such as:

Load combinations

A load combination results when more than one load type acts on the structure. Building codes usually specify a variety of load combinations together with load factors (weightings) for each load type in order to ensure the safety of the structure under different maximum expected loading scenarios. For example, in designing a staircase, a dead load factor may be 1.2 times the weight of the structure, and a live load factor may be 1.6 times the maximum expected live load. These two "factored loads" are combined (added) to determine the "required strength" of the staircase.

The size of the load factor is based on the probability of exceeding any specified design load. Dead loads have small load factors, such as 1.2, because weight is mostly known and accounted for, such as structural members, architectural elements and finishes, large pieces of mechanical, electrical and plumbing (MEP) equipment, and for buildings, it's common to include a Super Imposed Dead Load (SIDL) of around 5 pounds per square foot (psf) accounting for miscellaneous weight such as bolts and other fasteners, cabling, and various fixtures or small architectural elements. Live loads, on the other hand, can be furniture, moveable equipment, or the people themselves, and may increase beyond normal or expected amounts in some situations, so a larger factor of 1.6 attempts to quantify this extra variability. Snow will also use a maximum factor of 1.6, while lateral loads (earthquakes and wind) are defined such that a 1.0 load factor is practical. Multiple loads may be added together in different ways, such as 1.2*Dead + 1.0*Live + 1.0*Earthquake + 0.2*Snow, or 1.2*Dead + 1.6(Snow, Live(roof), OR Rain) + (1.0*Live OR 0.5*Wind).

Aircraft structural loads

For aircraft, loading is divided into two major categories: limit loads and ultimate loads. [11] Limit loads are the maximum loads a component or structure may carry safely. Ultimate loads are the limit loads times a factor of 1.5 or the point beyond which the component or structure will fail. [11] Gust loads are determined statistically and are provided by an agency such as the Federal Aviation Administration. Crash loads are loosely bounded by the ability of structures to survive the deceleration of a major ground impact. [12] Other loads that may be critical are pressure loads (for pressurized, high-altitude aircraft) and ground loads. Loads on the ground can be from adverse braking or maneuvering during taxiing. Aircraft are constantly subjected to cyclic loading. These cyclic loads can cause metal fatigue. [13]

See also

Related Research Articles

In civil engineering, specified loads are the best estimate of the actual loads a structure is expected to carry. These loads come in many different forms, such as people, equipment, vehicles, wind, rain, snow, earthquakes, the building materials themselves, etc. Specified Loads also known as Characteristic loads in many cases.

In engineering, a factor of safety (FoS), also known as safety factor (SF), expresses how much stronger a system is than it needs to be for an intended load. Safety factors are often calculated using detailed analysis because comprehensive testing is impractical on many projects, such as bridges and buildings, but the structure's ability to carry a load must be determined to a reasonable accuracy.

Structural analysis is a branch of solid mechanics which uses simplified models for solids like bars, beams and shells for engineering decision making. Its main objective is to determine the effect of loads on the physical structures and their components. In contrast to theory of elasticity, the models used in structure analysis are often differential equations in one spatial variable. Structures subject to this type of analysis include all that must withstand loads, such as buildings, bridges, aircraft and ships. Structural analysis uses ideas from applied mechanics, materials science and applied mathematics to compute a structure's deformations, internal forces, stresses, support reactions, velocity, accelerations, and stability. The results of the analysis are used to verify a structure's fitness for use, often precluding physical tests. Structural analysis is thus a key part of the engineering design of structures.

Limit State Design (LSD), also known as Load And Resistance Factor Design (LRFD), refers to a design method used in structural engineering. A limit state is a condition of a structure beyond which it no longer fulfills the relevant design criteria. The condition may refer to a degree of loading or other actions on the structure, while the criteria refer to structural integrity, fitness for use, durability or other design requirements. A structure designed by LSD is proportioned to sustain all actions likely to occur during its design life, and to remain fit for use, with an appropriate level of reliability for each limit state. Building codes based on LSD implicitly define the appropriate levels of reliability by their prescriptions.

<span class="mw-page-title-main">Maximum takeoff weight</span> Maximum weight of a craft at which takeoff is permitted

The maximum takeoff weight (MTOW) or maximum gross takeoff weight (MGTOW) or maximum takeoff mass (MTOM) of an aircraft is the maximum weight at which the pilot is allowed to attempt to take off, due to structural or other limits. The analogous term for rockets is gross lift-off mass, or GLOW. MTOW is usually specified in units of kilograms or pounds.

<span class="mw-page-title-main">Eurocodes</span> European Union structural design standards

The Eurocodes are the ten European standards specifying how structural design should be conducted within the European Union (EU). These were developed by the European Committee for Standardization upon the request of the European Commission.

Steel Design, or more specifically, Structural Steel Design, is an area of structural engineering used to design steel structures. These structures include schools, houses, bridges, commercial centers, tall buildings, warehouses, aircraft, ships and stadiums. The design and use of steel frames are commonly employed in the design of steel structures. More advanced structures include steel plates and shells.

<span class="mw-page-title-main">Probabilistic design</span> Discipline within engineering design

Probabilistic design is a discipline within engineering design. It deals primarily with the consideration and minimization of the effects of random variability upon the performance of an engineering system during the design phase. Typically, these effects studied and optimized are related to quality and reliability. It differs from the classical approach to design by assuming a small probability of failure instead of using the safety factor. Probabilistic design is used in a variety of different applications to assess the likelihood of failure. Disciplines which extensively use probabilistic design principles include product design, quality control, systems engineering, machine design, civil engineering and manufacturing.

<span class="mw-page-title-main">Voided biaxial slab</span>

Voided biaxial slabs, sometimes called biaxial slabs or voided slabs, are a type of reinforced concrete slab which incorporates air-filled voids to reduce the volume of concrete required. These voids enable cheaper construction and less environmental impact. Another major benefit of the system is its reduction in slab weight compared with regular solid decks. Up to 50% of the slab volume may be removed in voids, resulting in less load on structural members. This also allows increased weight and/or span, since the self-weight of the slab contributes less to the overall load.

<span class="mw-page-title-main">Cold-formed steel</span> Steel products shaped by cold-working processes

Cold-formed steel (CFS) is the common term for steel products shaped by cold-working processes carried out near room temperature, such as rolling, pressing, stamping, bending, etc. Stock bars and sheets of cold-rolled steel (CRS) are commonly used in all areas of manufacturing. The terms are opposed to hot-formed steel and hot-rolled steel.

<span class="mw-page-title-main">Structural engineering theory</span>

Structural engineering depends upon a detailed knowledge of loads, physics and materials to understand and predict how structures support and resist self-weight and imposed loads. To apply the knowledge successfully structural engineers will need a detailed knowledge of mathematics and of relevant empirical and theoretical design codes. They will also need to know about the corrosion resistance of the materials and structures, especially when those structures are exposed to the external environment.

<i>Eurocode 2: Design of concrete structures</i>

In the Eurocode series of European standards (EN) related to construction, Eurocode 2: Design of concrete structures specifies technical rules for the design of concrete, reinforced concrete and prestressed concrete structures, using the limit state design philosophy. It was approved by the European Committee for Standardization (CEN) on 16 April 2004 to enable designers across Europe to practice in any country that adopts the code.

<i>Eurocode: Basis of structural design</i>

In the Eurocode series of European standards (EN) related to construction, Eurocode: Basis of structural design establishes the basis that sets out the way to use Eurocodes for structural design. Eurocode 0 establishes Principles and requirements for the safety, serviceability and durability of structures, describes the basis for their design and verification and gives guidelines for related aspects of structural reliability. Eurocode 0 is intended to be used in conjunction with EN 1991 to EN 1999 for the structural design of buildings and civil engineering works, including geotechnical aspects, structural fire design, situations involving earthquakes, execution and temporary structures.

STAAD or (STAAD.Pro) is a structural analysis and design software application originally developed by Research Engineers International (REI) in 1997. In late 2005, Research Engineers International was bought by Bentley Systems. STAAD stands for STructural Analysis And Design.

<i>Eurocode 1: Actions on structures</i>

In the Eurocode series of European standards (EN) related to construction, Eurocode 1: Actions on structures describes how to design load-bearing structures. It includes characteristic values for various types of loads and densities for all materials which are likely to be used in construction.

<span class="mw-page-title-main">Structural integrity and failure</span> Ability of a structure to support a designed structural load without breaking

Structural integrity and failure is an aspect of engineering that deals with the ability of a structure to support a designed structural load without breaking and includes the study of past structural failures in order to prevent failures in future designs.

Robustness is the ability of a structure to withstand events like fire, explosions, impact or the consequences of human error, without being damaged to an extent disproportionate to the original cause – as defined in EN 1991-1-7 of the Accidental Actions Eurocode.

Metal profile sheet systems are used to build cost efficient and reliable envelopes of mostly commercial buildings. They have evolved from the single skin metal cladding often associated with agricultural buildings to multi-layer systems for industrial and leisure application. As with most construction components, the ability of the cladding to satisfy its functional requirements is dependent on its correct specification and installation. Also important is its interaction with other elements of the building envelope and structure. Metal profile sheets are metal structural members that due to the fact they can have different profiles, with different heights and different thickness, engineers and architects can use them for a variety of buildings, from a simple industrial building to a high demand design building. Trapezoidal profiles are large metal structural members, which, thanks to the profiling and thickness, retain their high load bearing capability. They have been developed from the corrugated profile. The profile programme offered by specific manufacturers covers a total of approximately 60 profile shapes with different heights. Cassettes are components that are mainly used as the inner shell in dual-shell wall constructions. They are mainly used in walls today, even though they were originally designed for use in roofs.

<span class="mw-page-title-main">Earthquake rotational loading</span>

Earthquake rotational loading indicates the excitation of structures due to the torsional and rocking components of seismic actions. Nathan M. Newmark was the first researcher who showed that this type of loading may result in unexpected failure of structures, and its influence should be considered in design codes. There are various phenomena that may lead to the earthquake rotational loading of structures, such as propagation of body wave, surface wave, special rotational wave, block rotation, topographic effect, and soil structure interaction.

This glossary of structural engineering terms pertains specifically to structural engineering and its sub-disciplines. Please see glossary of engineering for a broad overview of the major concepts of engineering.

References

  1. ASCE/SEI 7-05 Minimum Design Loads for Buildings and Other Structures. American Society of Civil Engineers. 2006. p. 1. ISBN   0-7844-0809-2.
  2. "1.5.3.1". Eurocode 0: Basis of structural design EN 1990. Bruxelles: European Committee for Standardization. 2002.
  3. Avallone, E.A.; Baumeister, T. (eds.). Mark's Standard Handbook for Mechanical Engineers (10th ed.). McGraw-Hill. pp. 11–42. ISBN   0-07-004997-1.
  4. "2.2.1(1)". Eurocode 0: Basis of structural design EN 1990. Bruxelles: European Committee for Standardization. 2002.
  5. "1604.2". International Building Code. USA: International Code Council. 2000. p. 295. ISBN   1-892395-26-6.
  6. "2.2.5(b)". Eurocode 0: Basis of structural design EN 1990. Bruxelles: European Committee for Standardization. 2002.
  7. Rao, Singiresu S. (1992). Reliability Based Design. USA: McGraw-Hill. pp. 214–227. ISBN   0-07-051192-6.
  8. 2006 International Building Code Section 1602.1.
  9. EN 1990 Euro code – Basis of structural design section 4.1.1
  10. EN 1991-1-1 Euro code 1: Actions on Structures – Part 1-1: General actions – densities, self-weight, imposed loads for buildings section 3.2
  11. 1 2 Bruce K. Donaldson, Analysis of Aircraft Structures: An Introduction (Cambridge; New York: Cambridge University Press, 2008), p. 126
  12. Experimental Mechanics: Advances in Design, Testing and Analysis, Volume 1, ed. I. M. Allison (Rotterdam, Netherlands: A.A. Balkema Publishers, 1998), p. 379
  13. Bruce K. Donaldson, Analysis of Aircraft Structures: An Introduction (Cambridge; New York: Cambridge University Press, 2008), p. 129