Fluid bearing

Last updated

Fluid bearings are bearings in which the load is supported by a thin layer of rapidly moving pressurized liquid or gas between the bearing surfaces. [1] Since there is no contact between the moving parts, there is no sliding friction, allowing fluid bearings to have lower friction, wear and vibration than many other types of bearings. Thus, it is possible for some fluid bearings to have near-zero wear if operated correctly. [1]

Contents

They can be broadly classified into two types: fluid dynamic bearings (also known as hydrodynamic bearings) and hydrostatic bearings. Hydrostatic bearings are externally pressurized fluid bearings, where the fluid is usually oil, water or air, and is pressurized by a pump. Hydrodynamic bearings rely on the high speed of the journal (the part of the shaft resting on the fluid) to pressurize the fluid in a wedge between the faces. Fluid bearings are frequently used in high load, high speed or high precision applications where ordinary ball bearings would have shortened life or caused high noise and vibration. They are also used increasingly to reduce cost. For example, hard disk drive motor fluid bearings are both quieter and cheaper than the ball bearings they replace. Applications are very versatile and may even be used in complex geometries such as leadscrews. [2]

The fluid bearing may have been invented by French civil engineer L. D. Girard, who in 1852 proposed a system of railway propulsion incorporating water-fed hydraulic bearings. [3] [1]

Operation

A hydrostatic bearing has two surfaces, one of which has fluid forced through a restrictive orifice, so that it fills the space between the surfaces so that it keeps them apart. If the gap between the surfaces reduces then the outflow via the edges of the bearing is reduced and the pressure goes up, forcing the surfaces apart again, giving excellent control of the gap and giving low friction. Hydrostatic bearing diagram.svg
A hydrostatic bearing has two surfaces, one of which has fluid forced through a restrictive orifice, so that it fills the space between the surfaces so that it keeps them apart. If the gap between the surfaces reduces then the outflow via the edges of the bearing is reduced and the pressure goes up, forcing the surfaces apart again, giving excellent control of the gap and giving low friction.

Fluid bearings are noncontact bearings that use a thin layer of rapidly moving pressurized liquid or gas fluid between the moving bearing faces, typically sealed around or under the rotating shaft. [1] The moving parts do not come into contact, so there is no sliding friction; the load force is supported solely by the pressure of the moving fluid. There are two principal ways of getting the fluid into the bearing:

Hydrostatic bearings rely on an external pump. The power required by that pump contributes to system energy loss, just as bearing friction otherwise would. Better seals can reduce leak rates and pumping power, but may increase friction.

Hydrodynamic bearings rely on bearing motion to suck fluid into the bearing, and may have high friction and short life at speeds lower than design, or during starts and stops. An external pump or secondary bearing may be used for startup and shutdown to prevent damage to the hydrodynamic bearing. A secondary bearing may have high friction and short operating life, but good overall service life if bearing starts and stops are infrequent.

Hydrodynamic lubrication

Hydrodynamic (HD) lubrication, also known as fluid-film lubrication has essential elements:

  1. A lubricant, which must be a viscous fluid.
  2. Hydrodynamic flow behavior of fluid between bearing and journal.
  3. The surfaces between which the fluid films move must be convergent.

Hydrodynamic (full film) lubrication is obtained when two mating surfaces are completely separated by a cohesive film of lubricant.

The thickness of the film thus exceeds the combined roughness of the surfaces. The coefficient of friction is lower than with boundary-layer lubrication. Hydrodynamic lubrication prevents wear in moving parts, and metal to metal contact is prevented.

Hydrodynamic lubrication requires thin, converging fluid films. These fluids can be liquid or gas, so long as they exhibit viscosity. In computer fan and spinning device, like a hard disk drive, heads are supported by hydrodynamic lubrication in which the fluid film is the atmosphere.

The scale of these films is on the order of micrometers. Their convergence creates pressures normal to the surfaces they contact, forcing them apart.

Miba Hydrodynamic Tilting Pad Journal Bearing Miba Journal Bearing.jpg
Miba Hydrodynamic Tilting Pad Journal Bearing

Three types of bearings include:

Conceptually the bearings can be thought of as two major geometric classes: bearing-journal (anti-friction), and plane-slider (friction).

The Reynolds equations can be used to derive the governing principles for the fluids. Note that when gases are used, their derivation is much more involved.

The thin films can be thought to have pressure and viscous forces acting on them. Because there is a difference in velocity there will be a difference in the surface traction vectors. Because of mass conservation we can also assume an increase in pressure, making the body forces different.


Bearing characteristic number: Since viscosity, velocity, and load determine the characteristics of a hydrodynamic condition, a bearing characteristic number was developed based on the effects of these on film thickness.

Increase in velocity increases min. film thickness
Increase in viscosity increases min. film thickness
Increase in load decreases min. film thickness

Therefore,

Viscosity × velocity/unit load = a dimensionless number = C

C is known as the bearing characteristic number.

The value of C, to some extent, gives an indication of whether there will be hydrodynamic lubrication or not

Characteristics of operation

Fluid bearings can be relatively cheap compared to other bearings with a similar load rating. The bearing can be as simple as two smooth surfaces with seals to keep in the working fluid. In contrast, a conventional rolling-element bearing may require many high-precision rollers with complicated shapes. Hydrostatic and many gas bearings do have the complication and expense of external pumps.

Most fluid bearings require little or no maintenance, and have almost unlimited life. Conventional rolling-element bearings usually have shorter life and require regular maintenance. Pumped hydrostatic and aerostatic (gas) bearing designs retain low friction down to zero speed and need not suffer start/stop wear, provided the pump does not fail.

Fluid bearings generally have very low friction—far better than mechanical bearings. One source of friction in a fluid bearing is the viscosity of the fluid leading to dynamic friction that increases with speed, but static friction is typically negligible. Hydrostatic gas bearings are among the lowest friction bearings even at very high speeds. However, lower fluid viscosity also typically means fluid leaks faster from the bearing surfaces, thus requiring increased power for pumps or friction from seals.

When a roller or ball is heavily loaded, fluid bearings have clearances that change less under load (are "stiffer") than mechanical bearings. It might seem that bearing stiffness, as with maximum design load, would be a simple function of average fluid pressure and the bearing surface area. In practice, when bearing surfaces are pressed together, the fluid outflow is constricted. This significantly increases the pressure of the fluid between the bearing faces. As fluid bearing faces can be comparatively larger than rolling surfaces, even small fluid pressure differences cause large restoring forces, maintaining the gap.

However, in lightly loaded bearings, such as disk drives, the typical ball bearing stiffnesses are ~10^7 MN/m. Comparable fluid bearings have stiffness of ~10^6 MN/m.[ citation needed ] Because of this, some fluid bearings, particularly hydrostatic bearings, are deliberately designed to pre-load the bearing to increase the stiffness.

Fluid bearings often inherently add significant damping. This helps attenuate resonances at the gyroscopic frequencies of journal bearings (sometimes called conical or rocking modes).

It is very difficult to make a mechanical bearing which is atomically smooth and round; and mechanical bearings deform in high-speed operation due to centripetal force. In contrast, fluid bearings self-correct for minor imperfections and slight deformations.

Fluid bearings are typically quieter and smoother (more consistent friction) than rolling-element bearings. For example, hard disk drives manufactured with fluid bearings have noise ratings for bearings/motors on the order of 20–24 dB, which is a little more than the background noise of a quiet room. Drives based on rolling-element bearings are typically at least 4 dB noisier.

Fluid bearings can be made with a lower NRRO (non repeatable run out) than a ball or rolling element bearing. This can be critical in modern hard disk drive and ultra precision spindles.

Tilting pad bearings are used as radial bearings for supporting and locating shafts in compressors.

Disadvantages

Some fluid bearings

Foil bearings

Foil bearings are a type of fluid dynamic air bearing that were introduced in high speed turbine applications in the 1960s by Garrett AiResearch. They use a gas as the working fluid, usually air, and require no external pressurisation system but need careful design to prevent wear during spin-up and spin-down when the bearing makes physical contact.

Water-lubricated rubber bearings

Water-lubricated rubber bearings have long cylindrical metal shell that hosts multiple rubber staves separated by axial grooves. The usage of the bearing has three major advantages: (i) pumped water going through the bearing is conveniently used as a lubricant, which reduces pump operation cost; (ii) water flow takes away heat and fine particles through the bearing grooves; and (iii) the natural resilience of rubber gives the bearing good properties for shock and vibration absorption and wear resistance. Water lubricated rubber bearings operate under the condition of mixed-lubrication. [5]

Air bearings used to provide linear and rotational motion Collection of air bearings from Specialty Components.jpg
Air bearings used to provide linear and rotational motion

Air bearings

Air bearings on a drill spindle for printed circuit boards Luftlagerung einer Hochfrequenz-Spindel fur das Leiterplattenbohren.jpg
Air bearings on a drill spindle for printed circuit boards

Unlike contact-roller bearings, an air bearing (or air caster) utilises a thin film of pressurized air to provide an exceedingly low friction load-bearing interface between surfaces. The two surfaces don't touch. Being non-contact, air bearings avoid the traditional bearing-related problems of friction, wear, particulates, and lubricant handling, and offer distinct advantages in precision positioning, such as lacking backlash and stiction, as well as in high-speed applications.

The fluid film of the bearing is air that flows through the bearing itself to the bearing surface. The design of the air bearing is such that, although the air constantly escapes from the bearing gap, the pressure between the faces of the bearing is enough to support the working loads. This pressure may be generated externally (aerostatic) or internally (aerodynamic).

Aerodynamic bearings can only be operated in high-speed applications, aerostatic bearings are required for load bearing at low speed. Both types require highly finished surfaces and precise manufacturing.

Examples

Air hockey is a game based on an aerostatic bearing which suspends the puck and players' paddles to provide low friction and thus sustain high puck speeds. The bearing uses a flat plane with periodic orifices which deliver air just over ambient pressure. The puck and paddles rest on air.

Michell/Kingsbury tilting-pad fluid bearings

Michell/Kingsbury fluid dynamic tilting-pad bearings were invented independently and almost simultaneously by both British-born Australian, Anthony George Maldon Michell and American tribologist Albert Kingsbury. Both designs were near-identical except for differences in the approach used for pivoting the pads. Michell mathematically derived the pressure distribution where a span-wise line pivot was placed, allowing the load to act through the point of maximum fluid pressure. The Kingsbury patent lacked this mathematical approach, and the pad's pivot point was placed in the geometric centre of the bearing. [6] Michell's patent (in Britain and Australia) was granted in 1905, while Kingsbury's first patent attempt was 1907. Kingsbury's U.S. patent was eventually granted in 1911 after he demonstrated that he had been working on the concept for many years. As stated by Sydney Walker, a long-time employee of Michell's, the granting of Kingsbury's patent was "a blow which Michell found hard to accept".

The bearing has sectional shoes, or pads on pivots. When the bearing is in operation, the rotating part of the bearing carries fresh oil in to the pad area through viscous drag. Fluid pressure causes the pad to tilt slightly, creating a narrow constriction between the shoe and the other bearing surface. A wedge of pressurised fluid builds behind this constriction, separating the moving parts. The tilt of the pad adaptively changes with bearing load and speed. Various design details ensure continued replenishment of the oil to avoid overheating and pad damage. [7]

Michell/Kingsbury fluid bearings are used in a wider variety of heavy-duty rotating equipment, including in hydroelectric plants to support turbines and generators weighing hundreds of tons. They are also used in very heavy machinery, such as marine propeller shafts.

It is likely the first tilting pad bearing in service was built in 1907 by George Weymoth (Pty) Ltd (under A.G.M. Michell's guidance) for a centrifugal pump at Cohuna on the Murray River, Victoria, Australia, just two years after Michell had published and patented his three-dimensional solution to Reynold's equation. By 1913, the great merits of the tilting-pad bearing had been recognised for marine applications. The first British ship to be fitted out with the bearing was the cross-channel steamboat the Paris, but many naval vessels were similarly equipped during the First World War. The practical results were spectacular – the troublesome thrust block became dramatically smaller and lighter, significantly more efficient, and remarkably free from maintenance troubles. It was estimated that the Royal Navy saved coal to a value of £500,000 in 1918 alone as a result of fitting Michell's tilting-pad bearings.

According to the ASME (see reference link), the first Michell/Kingsbury fluid bearing in the US was installed in the Holtwood Hydroelectric Power Plant (on the Susquehanna River, near Lancaster, Pennsylvania, US) in 1912. The 2.25-tonne bearing supports a water turbine and electric generator with a rotating mass of about 165 tonnes and water turbine pressure adding another 40 tonnes. The bearing has been in nearly continuous service since 1912, with no parts replaced. The ASME reported it was still in service as of 2000. As of 2002, the manufacturer estimated the bearings at Holtwood should have a maintenance-free life of about 1,300 years.

Until now tilting pad bearings play an essential role for rotating equipment like expanders, pumps, gas or steam turbines or compressors. Next to the traditional babbitt bearings which were used since the early 20th century modern manufacturers like Miba use other materials for example Bronze or Copper-Chromium as well to improve the bearings' performance. [8]

See also

Related Research Articles

A lubricant is a substance that helps to reduce friction between surfaces in mutual contact, which ultimately reduces the heat generated when the surfaces move. It may also have the function of transmitting forces, transporting foreign particles, or heating or cooling the surfaces. The property of reducing friction is known as lubricity.

<span class="mw-page-title-main">Ball bearing</span> Type of rolling-element bearing

A ball bearing is a type of rolling-element bearing that uses balls to maintain the separation between the bearing races.

<span class="mw-page-title-main">Bearing (mechanical)</span> Mechanism to constrain relative movement to the desired motion and reduce friction

A bearing is a machine element that constrains relative motion to only the desired motion and reduces friction between moving parts. The design of the bearing may, for example, provide for free linear movement of the moving part or for free rotation around a fixed axis; or, it may prevent a motion by controlling the vectors of normal forces that bear on the moving parts. Most bearings facilitate the desired motion by minimizing friction. Bearings are classified broadly according to the type of operation, the motions allowed, or the directions of the loads (forces) applied to the parts.

<span class="mw-page-title-main">Lubrication</span> The presence of a material to reduce friction between two surfaces.

Lubrication is the process or technique of using a lubricant to reduce friction and wear and tear in a contact between two surfaces. The study of lubrication is a discipline in the field of tribology.

Tribology is the science and engineering of understanding friction, lubrication and wear phenomena for interacting surfaces in relative motion. It is highly interdisciplinary, drawing on many academic fields, including physics, chemistry, materials science, mathematics, biology and engineering. The fundamental objects of study in tribology are tribosystems, which are physical systems of contacting surfaces. Subfields of tribology include biotribology, nanotribology and space tribology. It is also related to other areas such as the coupling of corrosion and tribology in tribocorrosion and the contact mechanics of how surfaces in contact deform. Approximately 20% of the total energy expenditure of the world is due to the impact of friction and wear in the transportation, manufacturing, power generation, and residential sectors.

<span class="mw-page-title-main">Plain bearing</span> Simplest type of bearing, with no rolling elements

A plain bearing, or more commonly sliding contact bearing and slide bearing, is the simplest type of bearing, comprising just a bearing surface and no rolling elements. Therefore, the journal slides over the bearing surface. The simplest example of a plain bearing is a shaft rotating in a hole. A simple linear bearing can be a pair of flat surfaces designed to allow motion; e.g., a drawer and the slides it rests on or the ways on the bed of a lathe.

<span class="mw-page-title-main">Foil bearing</span> Type of air bearing

A foil bearing, also known as a foil-air bearing, is a type of air bearing. A shaft is supported by a compliant, spring-loaded foil journal lining. Once the shaft is spinning fast enough, the working fluid pushes the foil away from the shaft so that no contact occurs. The shaft and foil are separated by the air's high pressure, which is generated by the rotation that pulls gas into the bearing via viscosity effects. The high speed of the shaft with respect to the foil is required to initiate the air gap, and once this has been achieved, no wear occurs. Unlike aerostatic or hydrostatic bearings, foil bearings require no external pressurisation system for the working fluid, so the hydrodynamic bearing is self-starting.

<span class="mw-page-title-main">Thrust bearing</span> Family of rotary bearings designed to support axial loads

A thrust bearing is a particular type of rotary bearing. Like other bearings they permanently rotate between parts, but they are designed to support a predominantly axial load.

<span class="mw-page-title-main">Drilling fluid</span> Aid for drilling boreholes into the ground

In geotechnical engineering, drilling fluid, also known as drilling mud, is used to aid the drilling of boreholes into the earth. Used while drilling oil and natural gas wells and on exploration drilling rigs, drilling fluids are also used for much simpler boreholes, such as water wells.

<span class="mw-page-title-main">Fluid coupling</span> Device used to transmit rotating mechanical power

A fluid coupling or hydraulic coupling is a hydrodynamic or 'hydrokinetic' device used to transmit rotating mechanical power. It has been used in automobile transmissions as an alternative to a mechanical clutch. It also has widespread application in marine and industrial machine drives, where variable speed operation and controlled start-up without shock loading of the power transmission system is essential.

<span class="mw-page-title-main">Oil pressure</span>

Oil pressure is an important factor in the longevity of most internal combustion engines. With a forced lubrication system, oil is picked up by a positive displacement oil pump and forced through oil galleries (passageways) into bearings, such as the main bearings, big end bearings and camshaft bearings or balance shaft bearings. Other components such as cam lobes and cylinder walls are lubricated by oil jets.

<span class="mw-page-title-main">Lubrication theory</span> Flow of fluids within extremely thin regions

In fluid dynamics, lubrication theory describes the flow of fluids in a geometry in which one dimension is significantly smaller than the others. An example is the flow above air hockey tables, where the thickness of the air layer beneath the puck is much smaller than the dimensions of the puck itself.

The Stribeck curve is a fundamental concept in the field of tribology. It shows that friction in fluid-lubricated contacts is a non-linear function of the contact load, the lubricant viscosity and the lubricant entrainment speed. The discovery and underlying research is usually attributed to Richard Stribeck and Mayo D. Hersey, who studied friction in journal bearings for railway wagon applications during the first half of the 20th century; however, other researchers have arrived at similar conclusions before. The mechanisms along the Stribeck curve have been understood today also on the atomistic level.

<span class="mw-page-title-main">Oil pump (internal combustion engine)</span> Internal combustion engine part that circulates engine oil under pressure

The oil pump is an internal combustion engine part that circulates engine oil under pressure to the rotating bearings, the sliding pistons and the camshaft of the engine. This lubricates the bearings, allows the use of higher-capacity fluid bearings and also assists in cooling the engine.

In the design of fluid bearings, the Sommerfeld number (S) is a dimensionless quantity used extensively in hydrodynamic lubrication analysis. The Sommerfeld number is very important in lubrication analysis because it contains all the variables normally specified by the designer.

A thrust block, also known as a thrust box, is a specialised form of thrust bearing used in ships, to resist the thrust of the propeller shaft and transmit it to the hull.

<span class="mw-page-title-main">Albert Kingsbury</span> Engineer and inventor

Albert Kingsbury was an American engineer, inventor and entrepreneur. He was responsible for over fifty patents obtained between the years 1902 to 1930. Kingsbury is most famous for his hydrodynamic thrust bearing which uses a thin film of oil to support weights of up to 220 tons. This bearing extended the service life of many types of machinery during the early 20th century. It was primarily outfitted on Navy ships during World War I and World War II.

<span class="mw-page-title-main">Spiral groove bearing</span> Hydrodynamic bearings using spiral grooves to develop lubricant pressure

Spiral groove bearings are self-acting, or hydrodynamic bearings used to reduce friction and wear without the use of pressurized lubricants. They have this ability due to special patterns of grooves. Spiral groove bearings are self-acting because their own rotation builds up the pressure needed to separate the bearing surfaces. For this reason, they are also contactless bearings.

In fluid mechanics, the Reynolds equation is a partial differential equation governing the pressure distribution of thin viscous fluid films. It was first derived by Osborne Reynolds in 1886. The classical Reynolds Equation can be used to describe the pressure distribution in nearly any type of fluid film bearing; a bearing type in which the bounding bodies are fully separated by a thin layer of liquid or gas.

<span class="mw-page-title-main">Air bearing</span>

Air bearings are bearings that use a thin film of pressurized gas to provide a low friction load-bearing interface between surfaces. The two surfaces do not touch, thus avoiding the traditional bearing-related problems of friction, wear, particulates, and lubricant handling, and offer distinct advantages in precision positioning, such as lacking backlash and static friction, as well as in high-speed applications. Space craft simulators now most often use air bearings and 3-D printers are now used to make air-bearing-based attitude simulators for CubeSat satellites.

References

  1. 1 2 3 4 Rowe, W. Brian (2012). Hydrostatic, Aerostatic and Hybrid Bearing Design. Butterworth-Heinemann. pp. 1–4. ISBN   978-0123972392.
  2. ,"Hydrostatic nut and lead screw assembly, and method of forming said nut",issued 1994-12-29
  3. Girard, L. Dominique (1852). Hydraulique appliquée. Nouveau système de locomotion sur les chemins de fer (Applied hydraulics. New locomotion system for railways). Ecole Polytechnique.
  4. Il’ina T.E., Prodan N.V. (2015). "Element design for an inkjet system of hydrostatic gas bearing control". Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 15 (5): 921–929. doi: 10.17586/2226-1494-2015-15-5-921-929 .
  5. Liu, Shibing; Yang, Bingen (2015). "A new model of water-lubricated rubber bearings for vibration analysis of flexible multistage rotor systems". Journal of Sound and Vibration. 349: 230–258. Bibcode:2015JSV...349..230L. doi:10.1016/j.jsv.2015.03.052.
  6. Stachowiak, Gwidon; Batchelor, Andrew W. "Engineering Tribology pp 135–136", Butterworth–Heinemann , London, 31 March 2011. Retrieved on 23 March 2013.
  7. "Features of Linear INA Bearings". 2022-05-09. Retrieved 2022-11-16.
  8. "Miba Thrust Bearings".