Preconsolidation pressure

Last updated

Preconsolidation pressure is the maximum effective vertical overburden stress that a particular soil sample has sustained in the past. [1] This quantity is important in geotechnical engineering, particularly for finding the expected settlement of foundations and embankments. Alternative names for the preconsolidation pressure are preconsolidation stress, pre-compression stress, pre-compaction stress, and preload stress. [2] A soil is called overconsolidated if the current effective stress acting on the soil is less than the historical maximum.

Contents

The preconsolidation pressure can help determine the largest overburden pressure that can be exerted on a soil without irrecoverable volume change. This type of volume change is important for understanding shrinkage behavior, crack and structure formation and resistance to shearing stresses. [3] Previous stresses and other changes in a soil's history are preserved within the soil's structure. [4] If a soil is loaded beyond this point the soil is unable to sustain the increased load and the structure will break down. [4] This breakdown can cause a number of different things depending on the type of soil and its geologic history.

Preconsolidation pressure cannot be measured directly, but can be estimated using a number of different strategies. Samples taken from the field are subjected to a variety of tests, like the constant rate of strain test (CRS) or the incremental loading test (IL). These tests can be costly due to expensive equipment and the long period of time they require. Each sample must be undisturbed and can only undergo one test with satisfactory results. [5] It is important to execute these tests precisely to ensure an accurate resulting plot. There are various methods for determining the preconsolidation pressure from lab data. The data is usually arranged on a semilog plot of the effective stress (frequently represented as σ'vc) versus the void ratio. This graph is commonly called the e log p curve or the consolidation curve.

Methods

The preconsolidation pressure can be estimated in a number of different ways but not measured directly. It is useful to know the range of expected values depending on the type of soil being analyzed. For example, in samples with natural moisture content at the liquid limit (liquidity index of 1), preconsolidation ranges between about 0.1 and 0.8 tsf, depending on soil sensitivity (defined as the ratio of undisturbed peak undrained shear strength to totally remolded undrained shear strength). [5] For natural moisture at the plastic limit (liquidity index equal to zero), preconsolidation ranges from about 12 to 25 tsf. [5]

See Atterberg limits for information about soil properties like liquidity index and liquid limit.

Arthur Casagrande's graphical method

The consolidation curve for a saturated clay showing the procedure for finding the preconsolidation pressure. Consol curve plain.svg
The consolidation curve for a saturated clay showing the procedure for finding the preconsolidation pressure.

Using a consolidation curve:(Casagrande 1936) [6]

  1. Choose by eye the point of maximum curvature on the consolidation curve.
  2. Draw a horizontal line from this point.
  3. Draw a line tangent to the curve at the point found in part 1.
  4. Bisect the angle made from the horizontal line in part 2 and the tangent line in part 3.
  5. Extend the "straight portion" of the virgin compression curve (high effective stress, low void ratio: almost vertical on the right of the graph) up to the bisector line in part 4.

The point where the lines in part 4 and part 5 intersect is the preconsolidation pressure. [7]

Gregory et al. [8] proposed an analytical method to calculate preconsolidation stress that avoids subjective interpretations of the location of the maximum curvature point (i.e. Minimum radius of curvature). Tomás et al. [9] used this method to calculate the preconsolidation pressure of 139 undisturbed soil samples to generate preconsolidation pressure maps of the Vega Baja of the Segura (Spain).

Estimation of the "most probable" preconsolidation pressure

Using a consolidation curve, intersect the horizontal portion of the recompression curve and a line tangent to the compression curve. This point is within the range of probable preconsolidation pressures. [4] It can be used in calculations that require less accuracy or if a rough estimate is all that is required.

See "Modeling Volume Change and Mechanical Properties with Hydraulic Models," from the Soil Science Society of America (link in references) for a more involved mathematical model based on Casagrande's method combining principles from soil mechanics and hydraulics.

Profiling of overconsolidation ratio in clays by field vane

The field vane (FV) has traditionally been utilized to obtain profiles of undrained shear strength in soft to medium clays. After some 40 years of experience with FV results, it has been suggested that empirical correction factors be applied to the FV data to account for the effects of strain rate, anisotropy, and disturbance on measured shear strengths. [10] As an additional use of the device, the FV may be calibrated at each site to develop profiles of overconsolidation ratio (OCR) with depth by , [11] where (PI, %).

Mechanisms causing preconsolidation

Various different factors can cause a soil to approach its preconsolidation pressure:

Uses

Preconsolidation pressure is used in many calculations of soil properties essential for structural analysis and soil mechanics. One of the primary uses is to predict settlement of a structure after loading. [1] This is required for any construction project such as new buildings, bridges, large roads and railroad tracks. All of these require site evaluation before construction. Preparing a site for construction requires an initial compression of the soil to prepare for foundation to be added. It is important to know the preconsolidation pressure because it will help to determine the amount of loading that is appropriate for the site. It will also help to determine whether recompression (after excavation), if the conditions allow, soil can exhibit volumetric expansion, recompression, due to the removal of load [5] conditions need to be considered.

See also

Notes

Related Research Articles

<span class="mw-page-title-main">Geotechnical engineering</span> Scientific study of earth materials in engineering problems

Geotechnical engineering, also known as geotechnics, is the branch of civil engineering concerned with the engineering behavior of earth materials. It uses the principles of soil mechanics and rock mechanics for the solution of its respective engineering problems. It also relies on knowledge of geology, hydrology, geophysics, and other related sciences. Geotechnical (rock) engineering is a subdiscipline of civil engineering.

The field of strength of materials typically refers to various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts. The methods employed to predict the response of a structure under loading and its susceptibility to various failure modes takes into account the properties of the materials such as its yield strength, ultimate strength, Young's modulus, and Poisson's ratio. In addition, the mechanical element's macroscopic properties such as its length, width, thickness, boundary constraints and abrupt changes in geometry such as holes are considered.

<span class="mw-page-title-main">Compressive strength</span> Capacity of a material or structure to withstand loads tending to reduce size

In mechanics, compressive strength is the capacity of a material or structure to withstand loads tending to reduce size. In other words, compressive strength resists compression, whereas tensile strength resists tension. In the study of strength of materials, tensile strength, compressive strength, and shear strength can be analyzed independently.

Stress–strain analysis is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics, stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other, while strain is the measure of the deformation of the material.

<span class="mw-page-title-main">Soil liquefaction</span> Soil material that is ordinarily a solid behaving like a liquid

Soil liquefaction occurs when a cohesionless saturated or partially saturated soil substantially loses strength and stiffness in response to an applied stress such as shaking during an earthquake or other sudden change in stress condition, in which material that is ordinarily a solid behaves like a liquid. In soil mechanics, the term "liquefied" was first used by Allen Hazen in reference to the 1918 failure of the Calaveras Dam in California. He described the mechanism of flow liquefaction of the embankment dam as:

If the pressure of the water in the pores is great enough to carry all the load, it will have the effect of holding the particles apart and of producing a condition that is practically equivalent to that of quicksand... the initial movement of some part of the material might result in accumulating pressure, first on one point, and then on another, successively, as the early points of concentration were liquefied.

<span class="mw-page-title-main">Soil mechanics</span> Branch of soil physics and applied mechanics that describes the behavior of soils

Soil mechanics is a branch of soil physics and applied mechanics that describes the behavior of soils. It differs from fluid mechanics and solid mechanics in the sense that soils consist of a heterogeneous mixture of fluids and particles but soil may also contain organic solids and other matter. Along with rock mechanics, soil mechanics provides the theoretical basis for analysis in geotechnical engineering, a subdiscipline of civil engineering, and engineering geology, a subdiscipline of geology. Soil mechanics is used to analyze the deformations of and flow of fluids within natural and man-made structures that are supported on or made of soil, or structures that are buried in soils. Example applications are building and bridge foundations, retaining walls, dams, and buried pipeline systems. Principles of soil mechanics are also used in related disciplines such as geophysical engineering, coastal engineering, agricultural engineering, hydrology and soil physics.

The Atterberg limits are a basic measure of the critical water contents of a fine-grained soil: its shrinkage limit, plastic limit, and liquid limit.

<span class="mw-page-title-main">Standard penetration test</span> Geotechnical engineering test of soil properties

The standard penetration test (SPT) is an in-situ dynamic penetration test designed to provide information on the geotechnical engineering properties of soil. This test is the most frequently used subsurface exploration drilling test performed worldwide. The test procedure is described in ISO 22476-3, ASTM D1586 and Australian Standards AS 1289.6.3.1. The test provides samples for identification purposes and provides a measure of penetration resistance which can be used for geotechnical design purposes. Various local and widely published international correlations that relate blow count, or N-value, to the engineering properties of soils are available for geotechnical engineering purposes.

A direct shear test is a laboratory or field test used by geotechnical engineers to measure the shear strength properties of soil or rock material, or of discontinuities in soil or rock masses.

<span class="mw-page-title-main">Soil compaction</span> Process in geotechnical engineering to increase soil density

In geotechnical engineering, soil compaction is the process in which stress applied to a soil causes densification as air is displaced from the pores between the soil grains. When stress is applied that causes densification due to water being displaced from between the soil grains, then consolidation, not compaction, has occurred. Normally, compaction is the result of heavy machinery compressing the soil, but it can also occur due to the passage of, for example, animal feet.

<span class="mw-page-title-main">Soil consolidation</span>

Soil consolidation refers to the mechanical process by which soil changes volume gradually in response to a change in pressure. This happens because soil is a two-phase material, comprising soil grains and pore fluid, usually groundwater. When soil saturated with water is subjected to an increase in pressure, the high volumetric stiffness of water compared to the soil matrix means that the water initially absorbs all the change in pressure without changing volume, creating excess pore water pressure. As water diffuses away from regions of high pressure due to seepage, the soil matrix gradually takes up the pressure change and shrinks in volume. The theoretical framework of consolidation is therefore closely related to the concept of effective stress, and hydraulic conductivity. The early theoretical modern models were proposed one century ago, according to two different approaches, by Karl Terzaghi and Paul Fillunger. The Terzaghi’s model is currently the most utilized in engineering practice and is based on the diffusion equation.

<span class="mw-page-title-main">Geotechnical investigation</span> Work done to obtain information on the physical properties of soil earthworks and foundations

Geotechnical investigations are performed by geotechnical engineers or engineering geologists to obtain information on the physical properties of soil earthworks and foundations for proposed structures and for repair of distress to earthworks and structures caused by subsurface conditions; this type of investigation is called a site investigation. Geotechnical investigations are also used to measure the thermal resistance of soils or backfill materials required for underground transmission lines, oil and gas pipelines, radioactive waste disposal, and solar thermal storage facilities. A geotechnical investigation will include surface exploration and subsurface exploration of a site. Sometimes, geophysical methods are used to obtain data about sites. Subsurface exploration usually involves soil sampling and laboratory tests of the soil samples retrieved.

<span class="mw-page-title-main">Fracture (geology)</span> Geologic discontinuity feature, often a joint or fault

A fracture is any separation in a geologic formation, such as a joint or a fault that divides the rock into two or more pieces. A fracture will sometimes form a deep fissure or crevice in the rock. Fractures are commonly caused by stress exceeding the rock strength, causing the rock to lose cohesion along its weakest plane. Fractures can provide permeability for fluid movement, such as water or hydrocarbons. Highly fractured rocks can make good aquifers or hydrocarbon reservoirs, since they may possess both significant permeability and fracture porosity.

<span class="mw-page-title-main">Triaxial shear test</span>

A triaxial shear test is a common method to measure the mechanical properties of many deformable solids, especially soil and rock, and other granular materials or powders. There are several variations on the test.

<span class="mw-page-title-main">Shear strength (soil)</span> Magnitude of the shear stress that a soil can sustain

Shear strength is a term used in soil mechanics to describe the magnitude of the shear stress that a soil can sustain. The shear resistance of soil is a result of friction and interlocking of particles, and possibly cementation or bonding of particle contacts. Due to interlocking, particulate material may expand or contract in volume as it is subject to shear strains. If soil expands its volume, the density of particles will decrease and the strength will decrease; in this case, the peak strength would be followed by a reduction of shear stress. The stress-strain relationship levels off when the material stops expanding or contracting, and when interparticle bonds are broken. The theoretical state at which the shear stress and density remain constant while the shear strain increases may be called the critical state, steady state, or residual strength.

Cohesion is the component of shear strength of a rock or soil that is independent of interparticle friction.

Arthur Casagrande was an American civil engineer born in Austria-Hungary who made important contributions to the fields of engineering geology and geotechnical engineering during its infancy. Renowned for his ingenious designs of soil testing apparatus and fundamental research on seepage and soil liquefaction, he is also credited for developing the soil mechanics teaching programme at Harvard University during the early 1930s that has since been modelled in many universities around the world.

<span class="mw-page-title-main">Oedometer test</span>

An oedometer test is a kind of geotechnical investigation performed in geotechnical engineering that measures a soil's consolidation properties. Oedometer tests are performed by applying different loads to a soil sample and measuring the deformation response. The results from these tests are used to predict how a soil in the field will deform in response to a change in effective stress.

<span class="mw-page-title-main">Offshore geotechnical engineering</span> Sub-field of engineering concerned with human-made structures in the sea

Offshore geotechnical engineering is a sub-field of geotechnical engineering. It is concerned with foundation design, construction, maintenance and decommissioning for human-made structures in the sea. Oil platforms, artificial islands and submarine pipelines are examples of such structures. The seabed has to be able to withstand the weight of these structures and the applied loads. Geohazards must also be taken into account. The need for offshore developments stems from a gradual depletion of hydrocarbon reserves onshore or near the coastlines, as new fields are being developed at greater distances offshore and in deeper water, with a corresponding adaptation of the offshore site investigations. Today, there are more than 7,000 offshore platforms operating at a water depth up to and exceeding 2000 m. A typical field development extends over tens of square kilometers, and may comprise several fixed structures, infield flowlines with an export pipeline either to the shoreline or connected to a regional trunkline.

<span class="mw-page-title-main">Dilatancy (granular material)</span> Volume change of a granular material under shearing

In soil mechanics, dilatancy is the volume change observed in granular materials when they are subjected to shear deformations. This effect was first described scientifically by Osborne Reynolds in 1885/1886 and is also known as Reynolds dilatancy. It was brought into the field of geotechnical engineering by Peter Walter Rowe.

References

  1. 1 2 Solanki, C. H.; Desai, M. D. (2008). "Preconsolidation Pressure from Soil Index and Plasticity Properties". The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics.–Goa, India.–2008. CiteSeerX   10.1.1.383.7352 .
  2. Dawidowski, J. B.; Koolen, A. J. (1994). "Computerized determination of the preconsolidation stress in compaction testing of field core samples". Soil and Tillage Research. 31 (2): 277–282. doi:10.1016/0167-1987(94)90086-8.
  3. Baumgartl, Th., and B. Köck. "Modeling Volume Change and Mechanical Properties with Hydraulic Models."
  4. 1 2 3 4 5 6 7 Holtz, Robert D. Kovacs, William D. "An Introduction to Geotechnical Engineering."
  5. 1 2 3 4 UFC. "Soil Mechanics." Repair and Maintenance Manual.
  6. Casagrande, Arthur (1936). "The determination of the pre-consolidation load and its practical significance". Proceedings of the international conference on soil mechanics and foundation engineering. Vol. 3. Harvard University Cambridge. pp. 60–64.
  7. Mesri, G. Peck, R B. Terzaghi, K. "Soil Mechanics in Engineering Practice." John Wiley & Sons, Inc. (1996). New York. (p 195).
  8. Gregory, A. S.; Whalley, W. R.; Watts, C. W.; Bird, N. R. A.; Hallett, P. D.; Whitmore, A. P. (2006-08-01). "Calculation of the compression index and precompression stress from soil compression test data". Soil and Tillage Research. 89 (1): 45–57. doi:10.1016/j.still.2005.06.012.
  9. 1 2 3 4 5 Tomás, R.; Domenech, C.; Mira, A.; Cuenca, A.; Delgado, J. (2007-05-22). "Preconsolidation stress in the Vega Baja and Media areas of the River Segura (SE Spain): Causes and relationship with piezometric level changes". Engineering Geology. 91 (2–4): 135–151. doi:10.1016/j.enggeo.2007.01.006.
  10. Paul W. MayneJames K. Mitchell (1987). "Web 2.0 authorship: Profiling of overconsolidation ratio in clays by field vane". Canadian Geotechnical Journal. 25 (1): 150–157. doi:10.1139/t88-015.
  11. in kN/m2
  12. Tomás, R.; Domenech, C.; Mira, A.; Cuenca, A.; Delgado, J. (2007-05-22). "Preconsolidation stress in the Vega Baja and Media areas of the River Segura (SE Spain): Causes and relationship with piezometric level changes". Engineering Geology. 91 (2–4): 135–151. doi:10.1016/j.enggeo.2007.01.006.