Stiction (a portmanteau of the words static and friction ) [1] is the force that needs to be overcome to enable relative motion of stationary objects in contact. [2] Any solid objects pressing against each other (but not sliding) will require some threshold of force parallel to the surface of contact in order to overcome static adhesion. [3] Stiction is a threshold, not a continuous force. However, stiction might also be an illusion made by the rotation of kinetic friction. [4]
In situations where two surfaces with areas below the micrometer scale come into close proximity (as in an accelerometer), they may adhere together. At this scale, electrostatic and/or Van der Waals and hydrogen bonding forces become significant. The phenomenon of two such surfaces being adhered together in this manner is also called stiction. Stiction may be related to hydrogen bonding or residual contamination.
Stiction is also the same threshold at which a rolling object would begin to slide over a surface rather than rolling at the expected rate (and in the case of a wheel, in the expected direction). In this case, it's called "rolling friction" or μr.
This is why driver training courses teach that, if a car begins to slide sideways, the driver should avoid braking and instead try to steer in the same direction as the slide. This gives the wheels a chance to regain static contact by rolling, which gives the driver some control again. Similarly, when trying to accelerate rapidly (particularly from a standing start) an overenthusiastic driver may "squeal" the driving wheels, but this impressive display of noise and smoke is less effective than maintaining static contact with the road. Many stunt-driving techniques (such as drifting) are done by deliberately breaking and/or regaining this rolling friction.
A car on a slippery surface can slide a long way with little control over orientation if the driver "locks" the wheels in stationary positions by pressing hard on the brakes. Anti-lock braking systems use wheel speed sensors and vehicle speed sensors to determine if any of the wheels have stopped turning. The ABS module then briefly releases pressure to any wheel that is spinning too slowly to not be slipping, to allow the road surface to begin turning the wheel freely again. Anti-lock brakes can be much more effective than cadence braking, which is essentially a manual technique for doing the same thing.
Stiction refers to the characteristic of start-and-stop–type motion of a mechanical assembly. Consider a mechanical element slowly increasing an external force on an assembly at rest that is designed for the relative rotation or sliding of its parts in contact. The static contact friction between the assembly parts resists movement, causing the spring moments in the assembly to store mechanical energy. Any part of the assembly that can elastically bend, even microscopically, and exert a restoring force contributes a spring moment. Thus the "springs" in an assembly might not be obvious to the eye. The increasing external force finally exceeds the static friction resisting force, and the spring moments, released, impulsively exert their restoring forces on both the moving assembly parts and, by Newton's Third Law, in reaction on the external forcing element. The assembly parts then impulsively accelerate with respect to each other, though resisted by dynamic contact friction (in this context very much less than the static friction). However, the forcing element cannot accelerate at the same pace, fails to keep up, and loses contact. The external force on the moving assembly momentarily drops to zero for lack of forcing mechanical contact even though the external force element continues its motion. The moving part then decelerates to a stop from the dynamic contact friction. The cycle repeats as the forcing element catches up to contact again. Stick, store spring energy, impulsively release spring energy, accelerate, decelerate, stop, stick. Repeat.
Stiction is a problem for the design and materials science of many moving linkages. This is particularly the case for linear sliding joints, rather than rotating pivots. Owing to simple geometry, the moving distance of a sliding joint in two comparable linkages is longer than the circumferential travel of a pivoting bearing, thus the forces involved (for equivalent work) are lower and stiction forces become proportionally more significant. This issue has often led to linkages being redesigned from sliding to purely pivoted structures, just to avoid problems with stiction. An example is the Chapman strut, a suspension linkage. [5]
During surface micromachining, stiction or adhesion between the substrate (usually silicon-based) and the microstructure occurs during the isotropic wet etching of the sacrificial layer. The capillary forces due to the surface tension of the liquid between the microstructure and substrate during drying of the wet etchant cause the two surfaces to adhere together. Separating the two surfaces is often complicated due to the fragile nature of the microstructure. Stiction is often circumvented by the use of a sublimating fluid (often supercritical CO2, which has extremely low surface tension) in a drying process where the liquid phase is bypassed. CO2 displaces the rinsing fluid and is heated past the supercritical point. As the chamber pressure is slowly released the CO2 sublimates, thereby preventing stiction.
Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. Types of friction include dry, fluid, lubricated, skin, and internal -- an incomplete list. The study of the processes involved is called tribology, and has a history of more than 2000 years.
A machine is a physical system that uses power to apply forces and control movement to perform an action. The term is commonly applied to artificial devices, such as those employing engines or motors, but also to natural biological macromolecules, such as molecular machines. Machines can be driven by animals and people, by natural forces such as wind and water, and by chemical, thermal, or electrical power, and include a system of mechanisms that shape the actuator input to achieve a specific application of output forces and movement. They can also include computers and sensors that monitor performance and plan movement, often called mechanical systems.
A disc brake is a type of brake that uses the calipers to squeeze pairs of pads against a disc or a rotor to create friction. There are two basic types of brake pad friction mechanisms: abrasive friction and adherent friction. This action slows the rotation of a shaft, such as a vehicle axle, either to reduce its rotational speed or to hold it stationary. The energy of motion is converted into heat, which must be dispersed.
A drum brake is a brake that uses friction caused by a set of shoes or pads that press outward against a rotating bowl-shaped part called a brake drum.
A bicycle brake reduces the speed of a bicycle or prevents the wheels from moving. The two main types are: rim brakes and disc brakes. Drum brakes are less common on bicycles.
Fluid bearings are bearings in which the load is supported by a thin layer of rapidly moving pressurized liquid or gas between the bearing surfaces. Since there is no contact between the moving parts, there is no sliding friction, allowing fluid bearings to have lower friction, wear and vibration than many other types of bearings. Thus, it is possible for some fluid bearings to have near-zero wear if operated correctly.
Tribology is the science and engineering of understanding friction, lubrication and wear phenomena for interacting surfaces in relative motion. It is highly interdisciplinary, drawing on many academic fields, including physics, chemistry, materials science, mathematics, biology and engineering. The fundamental objects of study in tribology are tribosystems, which are physical systems of contacting surfaces. Subfields of tribology include biotribology, nanotribology and space tribology. It is also related to other areas such as the coupling of corrosion and tribology in tribocorrosion and the contact mechanics of how surfaces in contact deform. Approximately 20% of the total energy expenditure of the world is due to the impact of friction and wear in the transportation, manufacturing, power generation, and residential sectors.
Automobile handling and vehicle handling are descriptions of the way a wheeled vehicle responds and reacts to the inputs of a driver, as well as how it moves along a track or road. It is commonly judged by how a vehicle performs particularly during cornering, acceleration, and braking as well as on the vehicle's directional stability when moving in steady state condition.
A highsider or high-side is a type of motorcycle accident characterized by sudden and violent rotation of the bike around its longitudinal axis. This generally happens when the rear wheel loses traction, skids, and then suddenly regains traction, causing the rider to be thrown head-first from the side of the motorcycle or over the handlebars.
In rail transport, a derailment is a type of train wreck that occurs when a rail vehicle such as a train comes off its rails. Although many derailments are minor, all result in temporary disruption of the proper operation of the railway system and they are a potentially serious hazard.
Rolling is a type of motion that combines rotation and translation of that object with respect to a surface, such that, if ideal conditions exist, the two are in contact with each other without sliding.
Rolling resistance, sometimes called rolling friction or rolling drag, is the force resisting the motion when a body rolls on a surface. It is mainly caused by non-elastic effects; that is, not all the energy needed for deformation of the wheel, roadbed, etc., is recovered when the pressure is removed. Two forms of this are hysteresis losses, and permanent (plastic) deformation of the object or the surface. Note that the slippage between the wheel and the surface also results in energy dissipation. Although some researchers have included this term in rolling resistance, some suggest that this dissipation term should be treated separately from rolling resistance because it is due to the applied torque to the wheel and the resultant slip between the wheel and ground, which is called slip loss or slip resistance. In addition, only the so-called slip resistance involves friction, therefore the name "rolling friction" is to an extent a misnomer.
An adhesion railway relies on adhesion traction to move the train, and is the most widespread and common type of railway in the world. Adhesion traction is the friction between the drive wheels and the steel rail. Since the vast majority of railways are adhesion railways, the term adhesion railway is used only when it is necessary to distinguish adhesion railways from railways moved by other means, such as by a stationary engine pulling on a cable attached to the cars or by a pinion meshing with a rack.
Traction, traction force or tractive force is a force used to generate motion between a body and a tangential surface, through the use of either dry friction or shear force. It has important applications in vehicles, as in tractive effort.
Fishtailing is a vehicle handling problem which occurs when the rear wheels lose traction, resulting in oversteer. This can be caused by low-friction surfaces. Rear-drive vehicles with sufficient power can induce this loss of traction on any surface, which is called power-oversteer.
The stick–slip phenomenon, also known as the slip–stick phenomenon or simply stick–slip, is a type of motion exhibited by objects in contact sliding over one another. The motion of these objects is usually not perfectly smooth, but rather irregular, with brief accelerations (slips) interrupted by stops (sticks). Stick–slip motion is normally connected to friction, and may generate vibration (noise) or be associated with mechanical wear of the moving objects, and is thus often undesirable in mechanical devices. On the other hand, stick–slip motion can be useful in some situations, such as the movement of a bow across a string to create musical tones in a bowed string instrument.
In engineering, a mechanism is a device that transforms input forces and movement into a desired set of output forces and movement. Mechanisms generally consist of moving components which may include Gears and gear trains; Belts and chain drives; cams and followers; Linkages; Friction devices, such as brakes or clutches; Structural components such as a frame, fasteners, bearings, springs, or lubricants; Various machine elements, such as splines, pins, or keys.
Most of the terms listed in Wikipedia glossaries are already defined and explained within Wikipedia itself. However, glossaries like this one are useful for looking up, comparing and reviewing large numbers of terms together. You can help enhance this page by adding new terms or writing definitions for existing ones.
This glossary of automotive terms is a list of definitions of terms and concepts related to automobiles, including their parts, operation, and manufacture, as well as automotive engineering, auto repair, and the automotive industry in general. For more specific terminology regarding the design and classification of various automobile styles, see Glossary of automotive design; for terms related to transportation by road, see Glossary of road transport terms; for competitive auto racing, see Glossary of motorsport terms.
Rolling Contact Fatigue (RCF) is a phenomenon that occurs in mechanical components relating to rolling/sliding contact, such as railways, gears, and bearings. It is the result of the process of fatigue due to rolling/sliding contact. The RCF process begins with cyclic loading of the material, which results in fatigue damage that can be observed in crack-like flaws, like white etching cracks. These flaws can grow into larger cracks under further loading, potentially leading to fractures.