In molecular physics and chemistry, the van der Waals force (sometimes van de Waals' force) is a distance-dependent interaction between atoms or molecules. Unlike ionic or covalent bonds, these attractions do not result from a chemical electronic bond; [2] they are comparatively weak and therefore more susceptible to disturbance. The van der Waals force quickly vanishes at longer distances between interacting molecules.
Named after Dutch physicist Johannes Diderik van der Waals, the van der Waals force plays a fundamental role in fields as diverse as supramolecular chemistry, structural biology, polymer science, nanotechnology, surface science, and condensed matter physics. It also underlies many properties of organic compounds and molecular solids, including their solubility in polar and non-polar media.
If no other force is present, the distance between atoms at which the force becomes repulsive rather than attractive as the atoms approach one another is called the van der Waals contact distance; this phenomenon results from the mutual repulsion between the atoms' electron clouds. [3]
The van der Waals forces [4] are usually described as a combination of the London dispersion forces between "instantaneously induced dipoles", [5] Debye forces between permanent dipoles and induced dipoles, and the Keesom force between permanent molecular dipoles whose rotational orientations are dynamically averaged over time.
Van der Waals forces include attraction and repulsions between atoms, molecules, as well as other intermolecular forces. They differ from covalent and ionic bonding in that they are caused by correlations in the fluctuating polarizations of nearby particles (a consequence of quantum dynamics [6] ).
The force results from a transient shift in electron density. Specifically, the electron density may temporarily shift to be greater on one side of the nucleus. This shift generates a transient charge which a nearby atom can be attracted to or repelled by. The force is repulsive at very short distances, reaches zero at an equilibrium distance characteristic for each atom, or molecule, and becomes attractive for distances larger than the equilibrium distance. For individual atoms, the equilibrium distance is between 0.3 nm and 0.5 nm, depending on the atomic-specific diameter. [7] When the interatomic distance is greater than 1.0 nm the force is not strong enough to be easily observed as it decreases as a function of distance r approximately with the 7th power (~r−7). [8]
Van der Waals forces are often among the weakest chemical forces. For example, the pairwise attractive van der Waals interaction energy between H (hydrogen) atoms in different H2 molecules equals 0.06 kJ/mol (0.6 meV) and the pairwise attractive interaction energy between O (oxygen) atoms in different O2 molecules equals 0.44 kJ/mol (4.6 meV). [9] The corresponding vaporization energies of H2 and O2 molecular liquids, which result as a sum of all van der Waals interactions per molecule in the molecular liquids, amount to 0.90 kJ/mol (9.3 meV) and 6.82 kJ/mol (70.7 meV), respectively, and thus approximately 15 times the value of the individual pairwise interatomic interactions (excluding covalent bonds).
The strength of van der Waals bonds increases with higher polarizability of the participating atoms. [10] For example, the pairwise van der Waals interaction energy for more polarizable atoms such as S (sulfur) atoms in H2S and sulfides exceeds 1 kJ/mol (10 meV), and the pairwise interaction energy between even larger, more polarizable Xe (xenon) atoms is 2.35 kJ/mol (24.3 meV). [11] These van der Waals interactions are up to 40 times stronger than in H2, which has only one valence electron, and they are still not strong enough to achieve an aggregate state other than gas for Xe under standard conditions. The interactions between atoms in metals can also be effectively described as van der Waals interactions and account for the observed solid aggregate state with bonding strengths comparable to covalent and ionic interactions. The strength of pairwise van der Waals type interactions is on the order of 12 kJ/mol (120 meV) for low-melting Pb (lead) and on the order of 32 kJ/mol (330 meV) for high-melting Pt (platinum), which is about one order of magnitude stronger than in Xe due to the presence of a highly polarizable free electron gas. [12] Accordingly, van der Waals forces can range from weak to strong interactions, and support integral structural loads when multitudes of such interactions are present.
More broadly, intermolecular forces have several possible contributions. They are ordered from strongest to weakest:
When to apply the term "van der Waals" force depends on the text. The broadest definitions include all intermolecular forces which are electrostatic in origin, namely (2), (3) and (4). [13] Some authors, whether or not they consider other forces to be of van der Waals type, focus on (3) and (4) as these are the components which act over the longest range. [14]
All intermolecular/van der Waals forces are anisotropic (except those between two noble gas atoms), which means that they depend on the relative orientation of the molecules. The induction and dispersion interactions are always attractive, irrespective of orientation, but the electrostatic interaction changes sign upon rotation of the molecules. That is, the electrostatic force can be attractive or repulsive, depending on the mutual orientation of the molecules. When molecules are in thermal motion, as they are in the gas and liquid phase, the electrostatic force is averaged out to a large extent because the molecules thermally rotate and thus probe both repulsive and attractive parts of the electrostatic force. Random thermal motion can disrupt or overcome the electrostatic component of the van der Waals force but the averaging effect is much less pronounced for the attractive induction and dispersion forces.
The Lennard-Jones potential is often used as an approximate model for the isotropic part of a total (repulsion plus attraction) van der Waals force as a function of distance.
Van der Waals forces are responsible for certain cases of pressure broadening (van der Waals broadening) of spectral lines and the formation of van der Waals molecules. The London–van der Waals forces are related to the Casimir effect for dielectric media, the former being the microscopic description of the latter bulk property. The first detailed calculations of this were done in 1955 by E. M. Lifshitz. [15] [16] A more general theory of van der Waals forces has also been developed. [17] [18]
The main characteristics of van der Waals forces are: [19]
In low molecular weight alcohols, the hydrogen-bonding properties of their polar hydroxyl group dominate other weaker van der Waals interactions. In higher molecular weight alcohols, the properties of the nonpolar hydrocarbon chain(s) dominate and determine their solubility.
Van der Waals forces are also responsible for the weak hydrogen bond interactions between unpolarized dipoles particularly in acid-base aqueous solution and between biological molecules.
London dispersion forces, named after the German-American physicist Fritz London, are weak intermolecular forces that arise from the interactive forces between instantaneous multipoles in molecules without permanent multipole moments. In and between organic molecules the multitude of contacts can lead to larger contribution of dispersive attraction, particularly in the presence of heteroatoms. London dispersion forces are also known as 'dispersion forces', 'London forces', or 'instantaneous dipole–induced dipole forces'. The strength of London dispersion forces is proportional to the polarizability of the molecule, which in turn depends on the total number of electrons and the area over which they are spread. Hydrocarbons display small dispersive contributions, the presence of heteroatoms lead to increased LD forces as function of their polarizability, e.g. in the sequence RI>RBr>RCl>RF. [20] In absence of solvents weakly polarizable hydrocarbons form crystals due to dispersive forces; their sublimation heat is a measure of the dispersive interaction.
For macroscopic bodies with known volumes and numbers of atoms or molecules per unit volume, the total van der Waals force is often computed based on the "microscopic theory" as the sum over all interacting pairs. It is necessary to integrate over the total volume of the object, which makes the calculation dependent on the objects' shapes. For example, the van der Waals interaction energy between spherical bodies of radii R1 and R2 and with smooth surfaces was approximated in 1937 by Hamaker [21] [ full citation needed ] (using London's famous 1937 equation for the dispersion interaction energy between atoms/molecules [22] [ full citation needed ] as the starting point) by:
(1) |
where A is the Hamaker coefficient, which is a constant (~10−19 − 10−20 J) that depends on the material properties (it can be positive or negative in sign depending on the intervening medium), and z is the center-to-center distance; i.e., the sum of R1, R2, and r (the distance between the surfaces): .
The van der Waals force between two spheres of constant radii (R1 and R2 are treated as parameters) is then a function of separation since the force on an object is the negative of the derivative of the potential energy function,. This yields:
(2) |
In the limit of close-approach, the spheres are sufficiently large compared to the distance between them; i.e., or , so that equation (1) for the potential energy function simplifies to:
(3) |
with the force:
(4) |
The van der Waals forces between objects with other geometries using the Hamaker model have been published in the literature. [23] [24] [25]
From the expression above, it is seen that the van der Waals force decreases with decreasing size of bodies (R). Nevertheless, the strength of inertial forces, such as gravity and drag/lift, decrease to a greater extent. Consequently, the van der Waals forces become dominant for collections of very small particles such as very fine-grained dry powders (where there are no capillary forces present) even though the force of attraction is smaller in magnitude than it is for larger particles of the same substance. Such powders are said to be cohesive, meaning they are not as easily fluidized or pneumatically conveyed as their more coarse-grained counterparts. Generally, free-flow occurs with particles greater than about 250 μm.
The van der Waals force of adhesion is also dependent on the surface topography. If there are surface asperities, or protuberances, that result in a greater total area of contact between two particles or between a particle and a wall, this increases the van der Waals force of attraction as well as the tendency for mechanical interlocking.
The microscopic theory assumes pairwise additivity. It neglects many-body interactions and retardation. A more rigorous approach accounting for these effects, called the "macroscopic theory", was developed by Lifshitz in 1956. [26] [ full citation needed ] Langbein derived a much more cumbersome "exact" expression in 1970 for spherical bodies within the framework of the Lifshitz theory [27] [ full citation needed ] while a simpler macroscopic model approximation had been made by Derjaguin as early as 1934. [28] [ full citation needed ] Expressions for the van der Waals forces for many different geometries using the Lifshitz theory have likewise been published.
The ability of geckos – which can hang on a glass surface using only one toe – to climb on sheer surfaces has been for many years mainly attributed to the van der Waals forces between these surfaces and the spatulae, or microscopic projections, which cover the hair-like setae found on their footpads. [29] [30]
There were efforts in 2008 to create a dry glue that exploits the effect, [31] and success was achieved in 2011 to create an adhesive tape on similar grounds [32] (i.e. based on van der Waals forces). In 2011, a paper was published relating the effect to both velcro-like hairs and the presence of lipids in gecko footprints. [33]
A later study suggested that capillary adhesion might play a role, [34] but that hypothesis has been rejected by more recent studies. [35] [36] [37]
A 2014 study has shown that gecko adhesion to smooth Teflon and polydimethylsiloxane surfaces is mainly determined by electrostatic interaction (caused by contact electrification), not van der Waals or capillary forces. [38]
Among the arthropods, some spiders have similar setae on their scopulae or scopula pads, enabling them to climb or hang upside-down from extremely smooth surfaces such as glass or porcelain. [39] [40]
A chemical bond is the association of atoms or ions to form molecules, crystals, and other structures. The bond may result from the electrostatic force between oppositely charged ions as in ionic bonds or through the sharing of electrons as in covalent bonds, or some combination of these effects. Chemical bonds are described as having different strengths: there are "strong bonds" or "primary bonds" such as covalent, ionic and metallic bonds, and "weak bonds" or "secondary bonds" such as dipole–dipole interactions, the London dispersion force, and hydrogen bonding.
An intermolecular force is the force that mediates interaction between molecules, including the electromagnetic forces of attraction or repulsion which act between atoms and other types of neighbouring particles, e.g. atoms or ions. Intermolecular forces are weak relative to intramolecular forces – the forces which hold a molecule together. For example, the covalent bond, involving sharing electron pairs between atoms, is much stronger than the forces present between neighboring molecules. Both sets of forces are essential parts of force fields frequently used in molecular mechanics.
Physisorption, also called physical adsorption, is a process in which the electronic structure of the atom or molecule is barely perturbed upon adsorption.
London dispersion forces are a type of intermolecular force acting between atoms and molecules that are normally electrically symmetric; that is, the electrons are symmetrically distributed with respect to the nucleus. They are part of the van der Waals forces. The LDF is named after the German physicist Fritz London. They are the weakest intermolecular force.
Molecular mechanics uses classical mechanics to model molecular systems. The Born–Oppenheimer approximation is assumed valid and the potential energy of all systems is calculated as a function of the nuclear coordinates using force fields. Molecular mechanics can be used to study molecule systems ranging in size and complexity from small to large biological systems or material assemblies with many thousands to millions of atoms.
Adhesion is the tendency of dissimilar particles or surfaces to cling to one another.
In physical chemistry, the Derjaguin–Landau–Verwey–Overbeek (DLVO) theory explains the aggregation and kinetic stability of aqueous dispersions quantitatively and describes the force between charged surfaces interacting through a liquid medium. It combines the effects of the van der Waals attraction and the electrostatic repulsion due to the so-called double layer of counterions. The electrostatic part of the DLVO interaction is computed in the mean field approximation in the limit of low surface potentials - that is when the potential energy of an elementary charge on the surface is much smaller than the thermal energy scale, . For two spheres of radius each having a charge separated by a center-to-center distance in a fluid of dielectric constant containing a concentration of monovalent ions, the electrostatic potential takes the form of a screened-Coulomb or Yukawa potential,
In chemistry, a non-covalent interaction differs from a covalent bond in that it does not involve the sharing of electrons, but rather involves more dispersed variations of electromagnetic interactions between molecules or within a molecule. The chemical energy released in the formation of non-covalent interactions is typically on the order of 1–5 kcal/mol. Non-covalent interactions can be classified into different categories, such as electrostatic, π-effects, van der Waals forces, and hydrophobic effects.
In the context of chemistry, molecular physics, physical chemistry, and molecular modelling, a force field is a computational model that is used to describe the forces between atoms within molecules or between molecules as well as in crystals. Force fields are a variety of interatomic potentials. More precisely, the force field refers to the functional form and parameter sets used to calculate the potential energy of a system on the atomistic level. Force fields are usually used in molecular dynamics or Monte Carlo simulations. The parameters for a chosen energy function may be derived from classical laboratory experiment data, calculations in quantum mechanics, or both. Force fields utilize the same concept as force fields in classical physics, with the main difference being that the force field parameters in chemistry describe the energy landscape on the atomistic level. From a force field, the acting forces on every particle are derived as a gradient of the potential energy with respect to the particle coordinates.
A molecular solid is a solid consisting of discrete molecules. The cohesive forces that bind the molecules together are van der Waals forces, dipole–dipole interactions, quadrupole interactions, π–π interactions, hydrogen bonding, halogen bonding, London dispersion forces, and in some molecular solids, coulombic interactions. Van der Waals, dipole interactions, quadrupole interactions, π–π interactions, hydrogen bonding, and halogen bonding are typically much weaker than the forces holding together other solids: metallic, ionic, and network solids.
In computational chemistry, a water model is used to simulate and thermodynamically calculate water clusters, liquid water, and aqueous solutions with explicit solvent. The models are determined from quantum mechanics, molecular mechanics, experimental results, and these combinations. To imitate a specific nature of molecules, many types of models have been developed. In general, these can be classified by the following three points; (i) the number of interaction points called site, (ii) whether the model is rigid or flexible, (iii) whether the model includes polarization effects.
In chemistry and materials science, molecular self-assembly is the process by which molecules adopt a defined arrangement without guidance or management from an outside source. There are two types of self-assembly: intermolecular and intramolecular. Commonly, the term molecular self-assembly refers to the former, while the latter is more commonly called folding.
In computational chemistry, distributed multipole analysis (DMA) is a compact and accurate way of describing the spatial distribution of electric charge within a molecule.
The van der Waals surface of a molecule is an abstract representation or model of that molecule, illustrating where, in very rough terms, a surface might reside for the molecule based on the hard cutoffs of van der Waals radii for individual atoms, and it represents a surface through which the molecule might be conceived as interacting with other molecules. Also referred to as a van der Waals envelope, the van der Waals surface is named for Johannes Diderik van der Waals, a Dutch theoretical physicist and thermodynamicist who developed theory to provide a liquid-gas equation of state that accounted for the non-zero volume of atoms and molecules, and on their exhibiting an attractive force when they interacted. van der Waals surfaces are therefore a tool used in the abstract representations of molecules, whether accessed, as they were originally, via hand calculation, or via physical wood/plastic models, or now digitally, via computational chemistry software. Practically speaking, CPK models, developed by and named for Robert Corey, Linus Pauling, and Walter Koltun, were the first widely used physical molecular models based on van der Waals radii, and allowed broad pedagogical and research use of a model showing the van der Waals surfaces of molecules.
In molecular physics, the Hamaker constant is a physical constant that can be defined for a van der Waals (vdW) body–body interaction:
Dispersive adhesion, also called adsorptive adhesion, is a mechanism for adhesion which attributes attractive forces between two materials to intermolecular interactions between molecules of each material. This mechanism is widely viewed as the most important of the five mechanisms of adhesion due to its presence in every type of adhesive system and its relative strength.
Membrane fusion is a key biophysical process that is essential for the functioning of life itself. It is defined as the event where two lipid bilayers approach each other and then merge to form a single continuous structure. In living beings, cells are made of an outer coat made of lipid bilayers; which then cause fusion to take place in events such as fertilization, embryogenesis and even infections by various types of bacteria and viruses. It is therefore an extremely important event to study. From an evolutionary angle, fusion is an extremely controlled phenomenon. Random fusion can result in severe problems to the normal functioning of the human body. Fusion of biological membranes is mediated by proteins. Regardless of the complexity of the system, fusion essentially occurs due to the interplay of various interfacial forces, namely hydration repulsion, hydrophobic attraction and van der Waals forces.
The feet of geckos have a number of specializations. Their surfaces can adhere to any type of material with the exception of Teflon (PTFE). This phenomenon can be explained with three elements:
In spectroscopy, collision-induced absorption and emission refers to spectral features generated by inelastic collisions of molecules in a gas. Such inelastic collisions may induce quantum transitions in the molecules, or the molecules may form transient supramolecular complexes with spectral features different from the underlying molecules. Collision-induced absorption and emission is particularly important in dense gases, such as hydrogen and helium clouds found in astronomical systems.
In condensed matter physics and physical chemistry, the Lifshitz theory of van der Waals forces, sometimes called the macroscopic theory of van der Waals forces, is a method proposed by Evgeny Mikhailovich Lifshitz in 1954 for treating van der Waals forces between bodies which does not assume pairwise additivity of the individual intermolecular forces; that is to say, the theory takes into account the influence of neighboring molecules on the interaction between every pair of molecules located in the two bodies, rather than treating each pair independently.
We have demonstrated that it is the CE-driven electrostatic interactions which dictate the strength of gecko adhesion, and not the van der Waals or capillary forces which are conventionally considered as the main source of gecko adhesion.