Quadrupole

Last updated

A quadrupole or quadrapole is one of a sequence of configurations of things like electric charge or current, or gravitational mass that can exist in ideal form, but it is usually just part of a multipole expansion of a more complex structure reflecting various orders of complexity.

Contents

Mathematical definition

The quadrupole moment tensorQ is a rank-two tensor—3×3 matrix. There are several definitions, but it is normally stated in the traceless form (i.e. ). The quadrupole moment tensor has thus nine components, but because of transposition symmetry and zero-trace property, in this form only five of these are independent.

For a discrete system of point charges or masses in the case of a gravitational quadrupole, each with charge , or mass , and position relative to the coordinate system origin, the components of the Q matrix are defined by:

The indices run over the Cartesian coordinates and is the Kronecker delta. This means that must be equal, up to sign, to distances from the point to mutually perpendicular hyperplanes for the Kronecker delta to equal 1.

In the non-traceless form, the quadrupole moment is sometimes stated as:

with this form seeing some usage in the literature regarding the fast multipole method. Conversion between these two forms can be easily achieved using a detracing operator. [1]

For a continuous system with charge density, or mass density, , the components of Q are defined by integral over the Cartesian space r: [2]

As with any multipole moment, if a lower-order moment, monopole or dipole in this case, is non-zero, then the value of the quadrupole moment depends on the choice of the coordinate origin. For example, a dipole of two opposite-sign, same-strength point charges, which has no monopole moment, can have a nonzero quadrupole moment if the origin is shifted away from the center of the configuration exactly between the two charges; or the quadrupole moment can be reduced to zero with the origin at the center. In contrast, if the monopole and dipole moments vanish, but the quadrupole moment does not, e.g. four same-strength charges, arranged in a square, with alternating signs, then the quadrupole moment is coordinate independent.

If each charge is the source of a " potential" field, like the electric or gravitational field, the contribution to the field's potential from the quadrupole moment is:

where R is a vector with origin in the system of charges and is the unit vector in the direction of R. That is to say, for are the Cartesian components of the unit vector pointing from the origin to the field point. Here, is a constant that depends on the type of field, and the units being used.

Electric quadrupole

Contour plot of the equipotential surfaces of an electric quadrupole field QuadrupoleContour.svg
Contour plot of the equipotential surfaces of an electric quadrupole field

A simple example of an electric quadrupole consists of alternating positive and negative charges, arranged on the corners of a square. The monopole moment (just the total charge) of this arrangement is zero. Similarly, the dipole moment is zero, regardless of the coordinate origin that has been chosen. But the quadrupole moment of the arrangement in the diagram cannot be reduced to zero, regardless of where we place the coordinate origin. The electric potential of an electric charge quadrupole is given by [3]

where is the electric permittivity, and follows the definition above.

Alternatively, other sources [4] include the factor of one half in the tensor itself, such that:

, and

which makes more explicit the connection to Legendre polynomials which result from the multipole expansion, namely here

Generalization: higher multipoles

An extreme generalization ("point octopole") would be: Eight alternating point charges at the eight corners of a parallelepiped, e.g., of a cube with edge length a. The "octopole moment" of this arrangement would correspond, in the "octopole limit" to a nonzero diagonal tensor of order three. Still higher multipoles, e.g. of order , would be obtained by dipolar (quadrupolar, octopolar, ...) arrangements of point dipoles (quadrupoles, octopoles, ...), not point monopoles, of lower order, e.g., .

Magnetic quadrupole

Coils producing a quadrupole field VFPt quadrupole coils 1.svg
Coils producing a quadrupole field
Schematic quadrupole magnet ("four-pole") Magnetic quadrupole moment.svg
Schematic quadrupole magnet ("four-pole")

All known magnetic sources give dipole fields. However, it is possible to make a magnetic quadrupole by placing four identical bar magnets perpendicular to each other such that the north pole of one is next to the south of the other. Such a configuration cancels the dipole moment and gives a quadrupole moment, and its field will decrease at large distances faster than that of a dipole.

An example of a magnetic quadrupole, involving permanent magnets, is depicted on the right. Electromagnets of similar conceptual design (called quadrupole magnets) are commonly used to focus beams of charged particles in particle accelerators and beam transport lines, a method known as strong focusing. There are four steel pole tips, two opposing magnetic north poles and two opposing magnetic south poles. The steel is magnetized by a large electric current that flows in the coils of tubing wrapped around the poles.

A changing magnetic quadrupole moment produces electromagnetic radiation.

Gravitational quadrupole

The mass quadrupole is analogous to the electric charge quadrupole, where the charge density is simply replaced by the mass density and a negative sign is added because the masses are always positive and the force is attractive. The gravitational potential is then expressed as:

For example, because the Earth is rotating, it is oblate (flattened at the poles). This gives it a nonzero quadrupole moment. While the contribution to the Earth's gravitational field from this quadrupole is extremely important for artificial satellites close to Earth, it is less important for the Moon because the term falls quickly.

The mass quadrupole moment is also important in general relativity because, if it changes in time, it can produce gravitational radiation, similar to the electromagnetic radiation produced by oscillating electric or magnetic dipoles and higher multipoles. However, only quadrupole and higher moments can radiate gravitationally. The mass monopole represents the total mass-energy in a system, which is conserved—thus it gives off no radiation. Similarly, the mass dipole corresponds to the center of mass of a system and its first derivative represents momentum which is also a conserved quantity so the mass dipole also emits no radiation. The mass quadrupole, however, can change in time, and is the lowest-order contribution to gravitational radiation. [5]

The simplest and most important example of a radiating system is a pair of mass points with equal masses orbiting each other on a circular orbit, an approximation to e.g. special case of binary black holes. Since the dipole moment is constant, we can for convenience place the coordinate origin right between the two points. Then the dipole moment will be zero, and if we also scale the coordinates so that the points are at unit distance from the center, in opposite direction, the system's quadrupole moment will then simply be

where M is the mass of each point, and are components of the (unit) position vector of one of the points. As they orbit, this x-vector will rotate, which means that it will have a non-zero first, and also a non-zero second time derivative (this is of course true regardless the choice of the coordinate system). Therefore, the system will radiate gravitational waves. Energy lost in this way was first observed in the changing period of the Hulse–Taylor binary, a pulsar in orbit with another neutron star of similar mass.

Just as electric charge and current multipoles contribute to the electromagnetic field, mass and mass-current multipoles contribute to the gravitational field in general relativity, causing the so-called gravitomagnetic effects. Changing mass-current multipoles can also give off gravitational radiation. However, contributions from the current multipoles will typically be much smaller than that of the mass quadrupole.

See also

Related Research Articles

<span class="mw-page-title-main">Dipole</span> Electromagnetic phenomenon

In physics, a dipole is an electromagnetic phenomenon which occurs in two ways:

<span class="mw-page-title-main">Magnetic dipole</span> Magnetic analogue of the electric dipole

In electromagnetism, a magnetic dipole is the limit of either a closed loop of electric current or a pair of poles as the size of the source is reduced to zero while keeping the magnetic moment constant.

A moment is a mathematical expression involving the product of a distance and a quantity such as a physical force, magnetic force, electric charge or a velocity. Moments are usually defined with respect to a fixed reference point and refer to physical quantities located some distance from the reference point. For example, the moment of force, often called torque, is the product of a force on an object and the distance from the reference point to the object. In principle, any physical quantity can be multiplied by a distance to produce a moment. Commonly used quantities include forces, masses, and electric charge distributions involving spherical harmonics; a list is provided later.

<span class="mw-page-title-main">Hyperfine structure</span> Small shifts and splittings in the energy levels of atoms, molecules and ions

In atomic physics, hyperfine structure is defined by small shifts in otherwise degenerate electronic energy levels and the resulting splittings in those electronic energy levels of atoms, molecules, and ions, due to electromagnetic multipole interaction between the nucleus and electron clouds.

<span class="mw-page-title-main">Magnetic moment</span> Magnetic strength and orientation of an object that produces a magnetic field

In electromagnetism, the magnetic moment or magnetic dipole moment is the combination of strength and orientation of a magnet or other object or system that exerts a magnetic field. The magnetic dipole moment of an object determines the magnitude of torque the object experiences in a given magnetic field. When the same magnetic field is applied, objects with larger magnetic moments experience larger torques. The strength of this torque depends not only on the magnitude of the magnetic moment but also on its orientation relative to the direction of the magnetic field. Its direction points from the south pole to north pole of the magnet.

<span class="mw-page-title-main">Quadrupole magnet</span> Group of four magnets

Quadrupole magnets, abbreviated as Q-magnets, consist of groups of four magnets laid out so that in the planar multipole expansion of the field, the dipole terms cancel and where the lowest significant terms in the field equations are quadrupole. Quadrupole magnets are useful as they create a magnetic field whose magnitude grows rapidly with the radial distance from its longitudinal axis. This is used in particle beam focusing.

<span class="mw-page-title-main">Stark effect</span> Spectral line splitting in electrical field

The Stark effect is the shifting and splitting of spectral lines of atoms and molecules due to the presence of an external electric field. It is the electric-field analogue of the Zeeman effect, where a spectral line is split into several components due to the presence of the magnetic field. Although initially coined for the static case, it is also used in the wider context to describe the effect of time-dependent electric fields. In particular, the Stark effect is responsible for the pressure broadening of spectral lines by charged particles in plasmas. For most spectral lines, the Stark effect is either linear or quadratic with a high accuracy.

Nuclear quadrupole resonance spectroscopy or NQR is a chemical analysis technique related to nuclear magnetic resonance (NMR). Unlike NMR, NQR transitions of nuclei can be detected in the absence of a magnetic field, and for this reason NQR spectroscopy is referred to as "zero Field NMR". The NQR resonance is mediated by the interaction of the electric field gradient (EFG) with the quadrupole moment of the nuclear charge distribution. Unlike NMR, NQR is applicable only to solids and not liquids, because in liquids the electric field gradient at the nucleus averages to zero. Because the EFG at the location of a nucleus in a given substance is determined primarily by the valence electrons involved in the particular bond with other nearby nuclei, the NQR frequency at which transitions occur is unique for a given substance. A particular NQR frequency in a compound or crystal is proportional to the product of the nuclear quadrupole moment, a property of the nucleus, and the EFG in the neighborhood of the nucleus. It is this product which is termed the nuclear quadrupole coupling constant for a given isotope in a material and can be found in tables of known NQR transitions. In NMR, an analogous but not identical phenomenon is the coupling constant, which is also the result of an internuclear interaction between nuclei in the analyte.

A classical field theory is a physical theory that predicts how one or more fields in physics interact with matter through field equations, without considering effects of quantization; theories that incorporate quantum mechanics are called quantum field theories. In most contexts, 'classical field theory' is specifically intended to describe electromagnetism and gravitation, two of the fundamental forces of nature.

In physics and chemistry, a selection rule, or transition rule, formally constrains the possible transitions of a system from one quantum state to another. Selection rules have been derived for electromagnetic transitions in molecules, in atoms, in atomic nuclei, and so on. The selection rules may differ according to the technique used to observe the transition. The selection rule also plays a role in chemical reactions, where some are formally spin-forbidden reactions, that is, reactions where the spin state changes at least once from reactants to products.

A multipole expansion is a mathematical series representing a function that depends on angles—usually the two angles used in the spherical coordinate system for three-dimensional Euclidean space, . Similarly to Taylor series, multipole expansions are useful because oftentimes only the first few terms are needed to provide a good approximation of the original function. The function being expanded may be real- or complex-valued and is defined either on , or less often on for some other .

In atomic physics, the electron magnetic moment, or more specifically the electron magnetic dipole moment, is the magnetic moment of an electron resulting from its intrinsic properties of spin and electric charge. The value of the electron magnetic moment is −9.2847646917(29)×10−24 J⋅T−1. In units of the Bohr magneton (μB), it is −1.00115965218059(13) μB, a value that was measured with a relative accuracy of 1.3×10−13.

In quantum physics, the spin–orbit interaction is a relativistic interaction of a particle's spin with its motion inside a potential. A key example of this phenomenon is the spin–orbit interaction leading to shifts in an electron's atomic energy levels, due to electromagnetic interaction between the electron's magnetic dipole, its orbital motion, and the electrostatic field of the positively charged nucleus. This phenomenon is detectable as a splitting of spectral lines, which can be thought of as a Zeeman effect product of two relativistic effects: the apparent magnetic field seen from the electron perspective and the magnetic moment of the electron associated with its intrinsic spin. A similar effect, due to the relationship between angular momentum and the strong nuclear force, occurs for protons and neutrons moving inside the nucleus, leading to a shift in their energy levels in the nucleus shell model. In the field of spintronics, spin–orbit effects for electrons in semiconductors and other materials are explored for technological applications. The spin–orbit interaction is at the origin of magnetocrystalline anisotropy and the spin Hall effect.

<span class="mw-page-title-main">Axial multipole moments</span>

Axial multipole moments are a series expansion of the electric potential of a charge distribution localized close to the origin along one Cartesian axis, denoted here as the z-axis. However, the axial multipole expansion can also be applied to any potential or field that varies inversely with the distance to the source, i.e., as . For clarity, we first illustrate the expansion for a single point charge, then generalize to an arbitrary charge density localized to the z-axis.

Magnets exert forces and torques on each other through the interaction of their magnetic fields. The forces of attraction and repulsion are a result of these interactions. The magnetic field of each magnet is due to microscopic currents of electrically charged electrons orbiting nuclei and the intrinsic magnetism of fundamental particles that make up the material. Both of these are modeled quite well as tiny loops of current called magnetic dipoles that produce their own magnetic field and are affected by external magnetic fields. The most elementary force between magnets is the magnetic dipole–dipole interaction. If all magnetic dipoles for each magnet are known then the net force on both magnets can be determined by summing all the interactions between the dipoles of the first magnet and the dipoles of the second magnet.

<span class="mw-page-title-main">Electric dipole moment</span> Measure of positive and negative charges

The electric dipole moment is a measure of the separation of positive and negative electrical charges within a system: that is, a measure of the system's overall polarity. The SI unit for electric dipole moment is the coulomb-meter (C⋅m). The debye (D) is another unit of measurement used in atomic physics and chemistry.

Multipole radiation is a theoretical framework for the description of electromagnetic or gravitational radiation from time-dependent distributions of distant sources. These tools are applied to physical phenomena which occur at a variety of length scales - from gravitational waves due to galaxy collisions to gamma radiation resulting from nuclear decay. Multipole radiation is analyzed using similar multipole expansion techniques that describe fields from static sources, however there are important differences in the details of the analysis because multipole radiation fields behave quite differently from static fields. This article is primarily concerned with electromagnetic multipole radiation, although the treatment of gravitational waves is similar.

In pure and applied mathematics, quantum mechanics and computer graphics, a tensor operator generalizes the notion of operators which are scalars and vectors. A special class of these are spherical tensor operators which apply the notion of the spherical basis and spherical harmonics. The spherical basis closely relates to the description of angular momentum in quantum mechanics and spherical harmonic functions. The coordinate-free generalization of a tensor operator is known as a representation operator.

In general relativity, the quadrupole formula describes the rate at which gravitational waves are emitted from a system of masses based on the change of the (mass) quadrupole moment. The formula reads

<span class="mw-page-title-main">Multipolarity of gamma radiation</span>

Transitions between excited states of a nuclide lead to the emission of gamma quanta. These can be classified by their multipolarity. There are two kinds: electric and magnetic multipole radiation. Each of these, being electromagnetic radiation, consists of an electric and a magnetic field.

References

  1. Applequist, J. (1989). "Traceless cartesian tensor forms for spherical harmonic functions: New theorems and applications to electrostatics of dielectric media". Journal of Physics A: Mathematical and General. 22 (20): 4303–4330. Bibcode:1989JPhA...22.4303A. doi:10.1088/0305-4470/22/20/011.
  2. Weisstein, Eric. "Electric Quadrupole Moment". Eric Weisstein's World of Physics. Wolfram Research . Retrieved May 8, 2012.
  3. Jackson, John David (1975). Classical Electrodynamics . John Wiley & Sons. ISBN   0-471-43132-X.
  4. Griffiths, David J. (2013). Introduction to Electrodynamics, 4th ed. Pearson. p. 153,165.
  5. Thorne, Kip S. (April 1980). "Multipole Expansions of Gravitational Radiation" (PDF). Reviews of Modern Physics. 52 (2): 299–339. Bibcode:1980RvMP...52..299T. doi:10.1103/RevModPhys.52.299.