In mathematics, Legendre polynomials, named after Adrien-Marie Legendre (1782), are a system of complete and orthogonal polynomials with a wide number of mathematical properties and numerous applications. They can be defined in many ways, and the various definitions highlight different aspects as well as suggest generalizations and connections to different mathematical structures and physical and numerical applications.
Closely related to the Legendre polynomials are associated Legendre polynomials, Legendre functions, Legendre functions of the second kind, big q-Legendre polynomials, and associated Legendre functions.
In this approach, the polynomials are defined as an orthogonal system with respect to the weight function over the interval . That is, is a polynomial of degree , such that
With the additional standardization condition , all the polynomials can be uniquely determined. We then start the construction process: is the only correctly standardized polynomial of degree 0. must be orthogonal to , leading to , and is determined by demanding orthogonality to and , and so on. is fixed by demanding orthogonality to all with . This gives conditions, which, along with the standardization fixes all coefficients in . With work, all the coefficients of every polynomial can be systematically determined, leading to the explicit representation in powers of given below.
This definition of the 's is the simplest one. It does not appeal to the theory of differential equations. Second, the completeness of the polynomials follows immediately from the completeness of the powers 1, . Finally, by defining them via orthogonality with respect to the Lebesgue measure on , it sets up the Legendre polynomials as one of the three classical orthogonal polynomial systems. The other two are the Laguerre polynomials, which are orthogonal over the half line with the weight , and the Hermite polynomials, orthogonal over the full line with weight .
The Legendre polynomials can also be defined as the coefficients in a formal expansion in powers of of the generating function [1]
(2) |
The coefficient of is a polynomial in of degree with . Expanding up to gives Expansion to higher orders gets increasingly cumbersome, but is possible to do systematically, and again leads to one of the explicit forms given below.
It is possible to obtain the higher 's without resorting to direct expansion of the Taylor series, however. Equation 2 is differentiated with respect to t on both sides and rearranged to obtain Replacing the quotient of the square root with its definition in Eq. 2 , and equating the coefficients of powers of t in the resulting expansion gives Bonnet’s recursion formula This relation, along with the first two polynomials P0 and P1, allows all the rest to be generated recursively.
The generating function approach is directly connected to the multipole expansion in electrostatics, as explained below, and is how the polynomials were first defined by Legendre in 1782.
A third definition is in terms of solutions to Legendre's differential equation:
(1) |
This differential equation has regular singular points at x = ±1 so if a solution is sought using the standard Frobenius or power series method, a series about the origin will only converge for |x| < 1 in general. When n is an integer, the solution Pn(x) that is regular at x = 1 is also regular at x = −1, and the series for this solution terminates (i.e. it is a polynomial). The orthogonality and completeness of these solutions is best seen from the viewpoint of Sturm–Liouville theory. We rewrite the differential equation as an eigenvalue problem, with the eigenvalue in lieu of . If we demand that the solution be regular at , the differential operator on the left is Hermitian. The eigenvalues are found to be of the form n(n + 1), with and the eigenfunctions are the . The orthogonality and completeness of this set of solutions follows at once from the larger framework of Sturm–Liouville theory.
The differential equation admits another, non-polynomial solution, the Legendre functions of the second kind . A two-parameter generalization of (Eq. 1 ) is called Legendre's general differential equation, solved by the Associated Legendre polynomials. Legendre functions are solutions of Legendre's differential equation (generalized or not) with non-integer parameters.
In physical settings, Legendre's differential equation arises naturally whenever one solves Laplace's equation (and related partial differential equations) by separation of variables in spherical coordinates. From this standpoint, the eigenfunctions of the angular part of the Laplacian operator are the spherical harmonics, of which the Legendre polynomials are (up to a multiplicative constant) the subset that is left invariant by rotations about the polar axis. The polynomials appear as where is the polar angle. This approach to the Legendre polynomials provides a deep connection to rotational symmetry. Many of their properties which are found laboriously through the methods of analysis — for example the addition theorem — are more easily found using the methods of symmetry and group theory, and acquire profound physical and geometrical meaning.
An especially compact expression for the Legendre polynomials is given by Rodrigues' formula:
This formula enables derivation of a large number of properties of the 's. Among these are explicit representations such as Expressing the polynomial as a power series, , the coefficients of powers of can also be calculated using a general formula:The Legendre polynomial is determined by the values used for the two constants and , where if is odd and if is even. [2]
In the fourth representation, stands for the largest integer less than or equal to . The last representation, which is also immediate from the recursion formula, expresses the Legendre polynomials by simple monomials and involves the generalized form of the binomial coefficient.
The first few Legendre polynomials are:
0 | |
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 |
The graphs of these polynomials (up to n = 5) are shown below:
The standardization fixes the normalization of the Legendre polynomials (with respect to the L2 norm on the interval −1 ≤ x ≤ 1). Since they are also orthogonal with respect to the same norm, the two statements[ clarification needed ] can be combined into the single equation, (where δmn denotes the Kronecker delta, equal to 1 if m = n and to 0 otherwise). This normalization is most readily found by employing Rodrigues' formula, given below.
That the polynomials are complete means the following. Given any piecewise continuous function with finitely many discontinuities in the interval [−1, 1], the sequence of sums converges in the mean to as , provided we take
This completeness property underlies all the expansions discussed in this article, and is often stated in the form with −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1.
The Legendre polynomials were first introduced in 1782 by Adrien-Marie Legendre [3] as the coefficients in the expansion of the Newtonian potential where r and r′ are the lengths of the vectors x and x′ respectively and γ is the angle between those two vectors. The series converges when r > r′. The expression gives the gravitational potential associated to a point mass or the Coulomb potential associated to a point charge. The expansion using Legendre polynomials might be useful, for instance, when integrating this expression over a continuous mass or charge distribution.
Legendre polynomials occur in the solution of Laplace's equation of the static potential, ∇2 Φ(x) = 0, in a charge-free region of space, using the method of separation of variables, where the boundary conditions have axial symmetry (no dependence on an azimuthal angle). Where ẑ is the axis of symmetry and θ is the angle between the position of the observer and the ẑ axis (the zenith angle), the solution for the potential will be
Al and Bl are to be determined according to the boundary condition of each problem. [4]
They also appear when solving the Schrödinger equation in three dimensions for a central force.
Legendre polynomials are also useful in expanding functions of the form (this is the same as before, written a little differently): which arise naturally in multipole expansions. The left-hand side of the equation is the generating function for the Legendre polynomials.
As an example, the electric potential Φ(r,θ) (in spherical coordinates) due to a point charge located on the z-axis at z = a (see diagram right) varies as
If the radius r of the observation point P is greater than a, the potential may be expanded in the Legendre polynomials where we have defined η = a/r < 1 and x = cos θ. This expansion is used to develop the normal multipole expansion.
Conversely, if the radius r of the observation point P is smaller than a, the potential may still be expanded in the Legendre polynomials as above, but with a and r exchanged. This expansion is the basis of interior multipole expansion.
The trigonometric functions cos nθ, also denoted as the Chebyshev polynomials Tn(cos θ) ≡ cos nθ, can also be multipole expanded by the Legendre polynomials Pn(cos θ). The first several orders are as follows:
Another property is the expression for sin (n + 1)θ, which is
A recurrent neural network that contains a d-dimensional memory vector, , can be optimized such that its neural activities obey the linear time-invariant system given by the following state-space representation:
In this case, the sliding window of across the past units of time is best approximated by a linear combination of the first shifted Legendre polynomials, weighted together by the elements of at time :
When combined with deep learning methods, these networks can be trained to outperform long short-term memory units and related architectures, while using fewer computational resources. [5]
Legendre polynomials have definite parity. That is, they are even or odd, [6] according to
Another useful property is which follows from considering the orthogonality relation with . It is convenient when a Legendre series is used to approximate a function or experimental data: the average of the series over the interval [−1, 1] is simply given by the leading expansion coefficient .
Since the differential equation and the orthogonality property are independent of scaling, the Legendre polynomials' definitions are "standardized" (sometimes called "normalization", but the actual norm is not 1) by being scaled so that
The derivative at the end point is given by
The Askey–Gasper inequality for Legendre polynomials reads
The Legendre polynomials of a scalar product of unit vectors can be expanded with spherical harmonics using where the unit vectors r and r′ have spherical coordinates (θ, φ) and (θ′, φ′), respectively.
The product of two Legendre polynomials [7] where is the complete elliptic integral of the first kind.
As discussed above, the Legendre polynomials obey the three-term recurrence relation known as Bonnet's recursion formula given by and or, with the alternative expression, which also holds at the endpoints
Useful for the integration of Legendre polynomials is
From the above one can see also that or equivalently where ‖Pn‖ is the norm over the interval −1 ≤ x ≤ 1
Asymptotically, for , the Legendre polynomials can be written as [8] and for arguments of magnitude greater than 1 [9] where J0, J1, and I0 are Bessel functions.
All zeros of are real, distinct from each other, and lie in the interval . Furthermore, if we regard them as dividing the interval into subintervals, each subinterval will contain exactly one zero of . This is known as the interlacing property. Because of the parity property it is evident that if is a zero of , so is . These zeros play an important role in numerical integration based on Gaussian quadrature. The specific quadrature based on the 's is known as Gauss-Legendre quadrature.
From this property and the facts that , it follows that has local minima and maxima in . Equivalently, has zeros in .
The parity and normalization implicate the values at the boundaries to be At the origin one can show that the values are given by
The shifted Legendre polynomials are defined as Here the "shifting" function x ↦ 2x − 1 is an affine transformation that bijectively maps the interval [0, 1] to the interval [−1, 1], implying that the polynomials P̃n(x) are orthogonal on [0, 1]:
An explicit expression for the shifted Legendre polynomials is given by
The analogue of Rodrigues' formula for the shifted Legendre polynomials is
The first few shifted Legendre polynomials are:
0 | |
1 | |
2 | |
3 | |
4 | |
5 | |
The Legendre rational functions are a sequence of orthogonal functions on [0, ∞). They are obtained by composing the Cayley transform with Legendre polynomials.
A rational Legendre function of degree n is defined as:
They are eigenfunctions of the singular Sturm–Liouville problem: with eigenvalues
{{cite book}}
: CS1 maint: location missing publisher (link)In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as or where is the Laplace operator, is the divergence operator, is the gradient operator, and is a twice-differentiable real-valued function. The Laplace operator therefore maps a scalar function to another scalar function.
A tautochrone curve or isochrone curve is the curve for which the time taken by an object sliding without friction in uniform gravity to its lowest point is independent of its starting point on the curve. The curve is a cycloid, and the time is equal to π times the square root of the radius over the acceleration of gravity. The tautochrone curve is related to the brachistochrone curve, which is also a cycloid.
The Chebyshev polynomials are two sequences of polynomials related to the cosine and sine functions, notated as and . They can be defined in several equivalent ways, one of which starts with trigonometric functions:
In physical science and mathematics, the Legendre functionsPλ, Qλ and associated Legendre functionsPμ
λ, Qμ
λ, and Legendre functions of the second kind, Qn, are all solutions of Legendre's differential equation. The Legendre polynomials and the associated Legendre polynomials are also solutions of the differential equation in special cases, which, by virtue of being polynomials, have a large number of additional properties, mathematical structure, and applications. For these polynomial solutions, see the separate Wikipedia articles.
In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields. The table of spherical harmonics contains a list of common spherical harmonics.
In mathematics, the classical orthogonal polynomials are the most widely used orthogonal polynomials: the Hermite polynomials, Laguerre polynomials, Jacobi polynomials.
In mathematics, the Clausen function, introduced by Thomas Clausen, is a transcendental, special function of a single variable. It can variously be expressed in the form of a definite integral, a trigonometric series, and various other forms. It is intimately connected with the polylogarithm, inverse tangent integral, polygamma function, Riemann zeta function, Dirichlet eta function, and Dirichlet beta function.
In quantum mechanics, a spherically symmetric potential is a system of which the potential only depends on the radial distance from the spherical center and a location in space. A particle in a spherically symmetric potential will behave accordingly to said potential and can therefore be used as an approximation, for example, of the electron in a hydrogen atom or of the formation of chemical bonds.
The Gaussian integral, also known as the Euler–Poisson integral, is the integral of the Gaussian function over the entire real line. Named after the German mathematician Carl Friedrich Gauss, the integral is
In mathematics, the associated Legendre polynomials are the canonical solutions of the general Legendre equation
In mathematics, the Legendre chi function is a special function whose Taylor series is also a Dirichlet series, given by
In physics, spherical multipole moments are the coefficients in a series expansion of a potential that varies inversely with the distance R to a source, i.e., as Examples of such potentials are the electric potential, the magnetic potential and the gravitational potential.
A pendulum is a body suspended from a fixed support such that it freely swings back and forth under the influence of gravity. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back towards the equilibrium position. When released, the restoring force acting on the pendulum's mass causes it to oscillate about the equilibrium position, swinging it back and forth. The mathematics of pendulums are in general quite complicated. Simplifying assumptions can be made, which in the case of a simple pendulum allow the equations of motion to be solved analytically for small-angle oscillations.
In mathematics, the Bessel polynomials are an orthogonal sequence of polynomials. There are a number of different but closely related definitions. The definition favored by mathematicians is given by the series
Clenshaw–Curtis quadrature and Fejér quadrature are methods for numerical integration, or "quadrature", that are based on an expansion of the integrand in terms of Chebyshev polynomials. Equivalently, they employ a change of variables and use a discrete cosine transform (DCT) approximation for the cosine series. Besides having fast-converging accuracy comparable to Gaussian quadrature rules, Clenshaw–Curtis quadrature naturally leads to nested quadrature rules, which is important for both adaptive quadrature and multidimensional quadrature (cubature).
The Wigner D-matrix is a unitary matrix in an irreducible representation of the groups SU(2) and SO(3). It was introduced in 1927 by Eugene Wigner, and plays a fundamental role in the quantum mechanical theory of angular momentum. The complex conjugate of the D-matrix is an eigenfunction of the Hamiltonian of spherical and symmetric rigid rotors. The letter D stands for Darstellung, which means "representation" in German.
In physics and mathematics, the solid harmonics are solutions of the Laplace equation in spherical polar coordinates, assumed to be (smooth) functions . There are two kinds: the regular solid harmonics, which are well-defined at the origin and the irregular solid harmonics, which are singular at the origin. Both sets of functions play an important role in potential theory, and are obtained by rescaling spherical harmonics appropriately:
In mathematics, vector spherical harmonics (VSH) are an extension of the scalar spherical harmonics for use with vector fields. The components of the VSH are complex-valued functions expressed in the spherical coordinate basis vectors.
In mathematics, discrete Chebyshev polynomials, or Gram polynomials, are a type of discrete orthogonal polynomials used in approximation theory, introduced by Pafnuty Chebyshev and rediscovered by Gram. They were later found to be applicable to various algebraic properties of spin angular momentum.
In mathematics, Jacobi polynomials are a class of classical orthogonal polynomials. They are orthogonal with respect to the weight on the interval . The Gegenbauer polynomials, and thus also the Legendre, Zernike and Chebyshev polynomials, are special cases of the Jacobi polynomials.