Regular singular point

Last updated

In mathematics, in the theory of ordinary differential equations in the complex plane , the points of are classified into ordinary points, at which the equation's coefficients are analytic functions, and singular points, at which some coefficient has a singularity. Then amongst singular points, an important distinction is made between a regular singular point, where the growth of solutions is bounded (in any small sector) by an algebraic function, and an irregular singular point, where the full solution set requires functions with higher growth rates. This distinction occurs, for example, between the hypergeometric equation, with three regular singular points, and the Bessel equation which is in a sense a limiting case, but where the analytic properties are substantially different.

Contents

Formal definitions

More precisely, consider an ordinary linear differential equation of n-th order

with pi(z) meromorphic functions.

The equation should be studied on the Riemann sphere to include the point at infinity as a possible singular point. A Möbius transformation may be applied to move ∞ into the finite part of the complex plane if required, see example on Bessel differential equation below.

Then the Frobenius method based on the indicial equation may be applied to find possible solutions that are power series times complex powers (za)r near any given a in the complex plane where r need not be an integer; this function may exist, therefore, only thanks to a branch cut extending out from a, or on a Riemann surface of some punctured disc around a. This presents no difficulty for a an ordinary point (Lazarus Fuchs 1866). When a is a regular singular point, which by definition means that

has a pole of order at most i at a, the Frobenius method also can be made to work and provide n independent solutions near a.

Otherwise the point a is an irregular singularity. In that case the monodromy group relating solutions by analytic continuation has less to say in general, and the solutions are harder to study, except in terms of their asymptotic expansions. The irregularity of an irregular singularity is measured by the Poincaré rank (Arscott (1995)).

The regularity condition is a kind of Newton polygon condition, in the sense that the allowed poles are in a region, when plotted against i, bounded by a line at 45° to the axes.

An ordinary differential equation whose only singular points, including the point at infinity, are regular singular points is called a Fuchsian ordinary differential equation.

Examples for second order differential equations

In this case the equation above is reduced to:

One distinguishes the following cases:

We can check whether there is an irregular singular point at infinity by using the substitution and the relations:

We can thus transform the equation to an equation in w, and check what happens at w = 0. If and are quotients of polynomials, then there will be an irregular singular point at infinite x unless the polynomial in the denominator of is of degree at least one more than the degree of its numerator and the denominator of is of degree at least two more than the degree of its numerator.

Listed below are several examples from ordinary differential equations from mathematical physics that have singular points and known solutions.

Bessel differential equation

This is an ordinary differential equation of second order. It is found in the solution to Laplace's equation in cylindrical coordinates:

for an arbitrary real or complex number α (the order of the Bessel function). The most common and important special case is where α is an integer n.

Dividing this equation by x2 gives:

In this case p1(x) = 1/x has a pole of first order at x = 0. When α ≠ 0, p0(x) = (1 − α2/x2) has a pole of second order at x = 0. Thus this equation has a regular singularity at 0.

To see what happens when x → ∞ one has to use a Möbius transformation, for example . After performing the algebra:

Now at ,

has a pole of first order, but

has a pole of fourth order. Thus, this equation has an irregular singularity at corresponding to x at ∞.

Legendre differential equation

This is an ordinary differential equation of second order. It is found in the solution of Laplace's equation in spherical coordinates:

Opening the square bracket gives:

And dividing by (1 − x2):

This differential equation has regular singular points at ±1 and ∞.

Hermite differential equation

One encounters this ordinary second order differential equation in solving the one-dimensional time independent Schrödinger equation

for a harmonic oscillator. In this case the potential energy V(x) is:

This leads to the following ordinary second order differential equation:

This differential equation has an irregular singularity at ∞. Its solutions are Hermite polynomials.

Hypergeometric equation

The equation may be defined as

Dividing both sides by z(1 − z) gives:

This differential equation has regular singular points at 0, 1 and ∞. A solution is the hypergeometric function.

Related Research Articles

<span class="mw-page-title-main">Bessel function</span> Families of solutions to related differential equations

Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel's differential equation

<span class="mw-page-title-main">Laplace's equation</span> Second-order partial differential equation

In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as

Fractional calculus is a branch of mathematical analysis that studies the several different possibilities of defining real number powers or complex number powers of the differentiation operator

In mathematics, the classical orthogonal polynomials are the most widely used orthogonal polynomials: the Hermite polynomials, Laguerre polynomials, Jacobi polynomials.

In mathematics, a linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form

<span class="mw-page-title-main">Particle in a spherically symmetric potential</span>

In quantum mechanics, a particle in a spherically symmetric potential is a system with a potential that depends only on the distance between the particle and a center. A particle in a spherically symmetric potential can be used as an approximation, for example, of the electron in a hydrogen atom or of the formation of chemical bonds.

In mathematics and its applications, a Sturm–Liouville problem is a second-order linear ordinary differential equation of the form:

In mathematics, the method of characteristics is a technique for solving partial differential equations. Typically, it applies to first-order equations, although more generally the method of characteristics is valid for any hyperbolic partial differential equation. The method is to reduce a partial differential equation to a family of ordinary differential equations along which the solution can be integrated from some initial data given on a suitable hypersurface.

<span class="mw-page-title-main">Envelope (mathematics)</span> Family of curves in geometry

In geometry, an envelope of a planar family of curves is a curve that is tangent to each member of the family at some point, and these points of tangency together form the whole envelope. Classically, a point on the envelope can be thought of as the intersection of two "infinitesimally adjacent" curves, meaning the limit of intersections of nearby curves. This idea can be generalized to an envelope of surfaces in space, and so on to higher dimensions.

In mathematics, the associated Legendre polynomials are the canonical solutions of the general Legendre equation

<span class="mw-page-title-main">Differential equation</span> Type of functional equation (mathematics)

In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, and the differential equation defines a relationship between the two. Such relations are common; therefore, differential equations play a prominent role in many disciplines including engineering, physics, economics, and biology.

In mathematics, Painlevé transcendents are solutions to certain nonlinear second-order ordinary differential equations in the complex plane with the Painlevé property, but which are not generally solvable in terms of elementary functions. They were discovered by Émile Picard (1889), Paul Painlevé , Richard Fuchs (1905), and Bertrand Gambier (1910).

<span class="mw-page-title-main">Hypergeometric function</span> Special function defined by a hypergeometric series

In mathematics, the Gaussian or ordinary hypergeometric function2F1(a,b;c;z) is a special function represented by the hypergeometric series, that includes many other special functions as specific or limiting cases. It is a solution of a second-order linear ordinary differential equation (ODE). Every second-order linear ODE with three regular singular points can be transformed into this equation.

In mathematics, the local Heun function is the solution of Heun's differential equation that is holomorphic and 1 at the singular point z = 0. The local Heun function is called a Heun function, denoted Hf, if it is also regular at z = 1, and is called a Heun polynomial, denoted Hp, if it is regular at all three finite singular points z = 0, 1, a.

In mathematics, Riemann's differential equation, named after Bernhard Riemann, is a generalization of the hypergeometric differential equation, allowing the regular singular points to occur anywhere on the Riemann sphere, rather than merely at 0, 1, and . The equation is also known as the Papperitz equation.

A differential equation can be homogeneous in either of two respects.

In mathematics, the equations governing the isomonodromic deformation of meromorphic linear systems of ordinary differential equations are, in a fairly precise sense, the most fundamental exact nonlinear differential equations. As a result, their solutions and properties lie at the heart of the field of exact nonlinearity and integrable systems.

In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation, Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.

In mathematics, the Fuchs relation is a relation between the starting exponents of formal series solutions of certain linear differential equations, so called Fuchsian equations. It is named after Lazarus Immanuel Fuchs.

The Fuchsian theory of linear differential equations, which is named after Lazarus Immanuel Fuchs, provides a characterization of various types of singularities and the relations among them.

References