In mathematics, the associated Legendre polynomials are the canonical solutions of the general Legendre equation
or equivalently
where the indices ℓ and m (which are integers) are referred to as the degree and order of the associated Legendre polynomial respectively. This equation has nonzero solutions that are nonsingular on [−1, 1] only if ℓ and m are integers with 0 ≤ m ≤ ℓ, or with trivially equivalent negative values. When in addition m is even, the function is a polynomial. When m is zero and ℓ integer, these functions are identical to the Legendre polynomials. In general, when ℓ and m are integers, the regular solutions are sometimes called "associated Legendre polynomials", even though they are not polynomials when m is odd. The fully general class of functions with arbitrary real or complex values of ℓ and m are Legendre functions. In that case the parameters are usually labelled with Greek letters.
The Legendre ordinary differential equation is frequently encountered in physics and other technical fields. In particular, it occurs when solving Laplace's equation (and related partial differential equations) in spherical coordinates. Associated Legendre polynomials play a vital role in the definition of spherical harmonics.
These functions are denoted , where the superscript indicates the order and not a power of P. Their most straightforward definition is in terms of derivatives of ordinary Legendre polynomials (m ≥ 0)
The (−1)m factor in this formula is known as the Condon–Shortley phase. Some authors omit it. That the functions described by this equation satisfy the general Legendre differential equation with the indicated values of the parameters ℓ and m follows by differentiating m times the Legendre equation for Pℓ: [1]
Moreover, since by Rodrigues' formula,
the Pm
ℓ can be expressed in the form
This equation allows extension of the range of m to: −ℓ ≤ m ≤ ℓ. The definitions of Pℓ±m, resulting from this expression by substitution of ±m, are proportional. Indeed, equate the coefficients of equal powers on the left and right hand side of
then it follows that the proportionality constant is
so that
The following alternative notations are also used in literature: [2]
The Associated Legendre Polynomial can also be written as:
with simple monomials and the generalized form of the binomial coefficient.
The associated Legendre polynomials are not mutually orthogonal in general. For example, is not orthogonal to . However, some subsets are orthogonal. Assuming 0 ≤ m ≤ ℓ, they satisfy the orthogonality condition for fixed m:
Where δk,ℓ is the Kronecker delta.
Also, they satisfy the orthogonality condition for fixed ℓ:
The differential equation is clearly invariant under a change in sign of m.
The functions for negative m were shown above to be proportional to those of positive m:
(This followed from the Rodrigues' formula definition. This definition also makes the various recurrence formulas work for positive or negative m.)
The differential equation is also invariant under a change from ℓ to −ℓ − 1, and the functions for negative ℓ are defined by
From their definition, one can verify that the Associated Legendre functions are either even or odd according to
The first few associated Legendre functions, including those for negative values of m, are:
These functions have a number of recurrence properties:
Helpful identities (initial values for the first recursion):
with !! the double factorial.
The integral over the product of three associated Legendre polynomials (with orders matching as shown below) is a necessary ingredient when developing products of Legendre polynomials into a series linear in the Legendre polynomials. For instance, this turns out to be necessary when doing atomic calculations of the Hartree–Fock variety where matrix elements of the Coulomb operator are needed. For this we have Gaunt's formula [3]
This formula is to be used under the following assumptions:
Other quantities appearing in the formula are defined as
The integral is zero unless
Dong and Lemus (2002) [4] generalized the derivation of this formula to integrals over a product of an arbitrary number of associated Legendre polynomials.
These functions may actually be defined for general complex parameters and argument:
where is the gamma function and is the hypergeometric function
They are called the Legendre functions when defined in this more general way. They satisfy the same differential equation as before:
Since this is a second order differential equation, it has a second solution, , defined as:
and both obey the various recurrence formulas given previously.
These functions are most useful when the argument is reparameterized in terms of angles, letting :
Using the relation , the list given above yields the first few polynomials, parameterized this way, as:
The orthogonality relations given above become in this formulation: for fixed m, are orthogonal, parameterized by θ over , with weight :
Also, for fixed ℓ:
In terms of θ, are solutions of
More precisely, given an integer m0, the above equation has nonsingular solutions only when for ℓ an integer ≥ m, and those solutions are proportional to .
In many occasions in physics, associated Legendre polynomials in terms of angles occur where spherical symmetry is involved. The colatitude angle in spherical coordinates is the angle used above. The longitude angle, , appears in a multiplying factor. Together, they make a set of functions called spherical harmonics. These functions express the symmetry of the two-sphere under the action of the Lie group SO(3).[ citation needed ]
What makes these functions useful is that they are central to the solution of the equation on the surface of a sphere. In spherical coordinates θ (colatitude) and φ (longitude), the Laplacian is
When the partial differential equation
is solved by the method of separation of variables, one gets a φ-dependent part or for integer m≥0, and an equation for the θ-dependent part
for which the solutions are with and .
Therefore, the equation
has nonsingular separated solutions only when , and those solutions are proportional to
and
For each choice of ℓ, there are 2ℓ + 1 functions for the various values of m and choices of sine and cosine. They are all orthogonal in both ℓ and m when integrated over the surface of the sphere.
The solutions are usually written in terms of complex exponentials:
The functions are the spherical harmonics, and the quantity in the square root is a normalizing factor. Recalling the relation between the associated Legendre functions of positive and negative m, it is easily shown that the spherical harmonics satisfy the identity [5]
The spherical harmonic functions form a complete orthonormal set of functions in the sense of Fourier series. Workers in the fields of geodesy, geomagnetism and spectral analysis use a different phase and normalization factor than given here (see spherical harmonics).
When a 3-dimensional spherically symmetric partial differential equation is solved by the method of separation of variables in spherical coordinates, the part that remains after removal of the radial part is typically of the form
and hence the solutions are spherical harmonics.
The Legendre polynomials are closely related to hypergeometric series. In the form of spherical harmonics, they express the symmetry of the two-sphere under the action of the Lie group SO(3). There are many other Lie groups besides SO(3), and an analogous generalization of the Legendre polynomials exist to express the symmetries of semi-simple Lie groups and Riemannian symmetric spaces. Crudely speaking, one may define a Laplacian on symmetric spaces; the eigenfunctions of the Laplacian can be thought of as generalizations of the spherical harmonics to other settings.
In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as
In physical science and mathematics, Legendre polynomials are a system of complete and orthogonal polynomials, with a vast number of mathematical properties, and numerous applications. They can be defined in many ways, and the various definitions highlight different aspects as well as suggest generalizations and connections to different mathematical structures and physical and numerical applications.
An ellipsoid is a surface that may be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.
The Chebyshev polynomials are two sequences of polynomials related to the cosine and sine functions, notated as and . They can be defined in several equivalent ways, one of which starts with trigonometric functions:
In physical science and mathematics, the Legendre functionsPλ, Qλ and associated Legendre functionsPμ
λ, Qμ
λ, and Legendre functions of the second kind, Qn, are all solutions of Legendre's differential equation. The Legendre polynomials and the associated Legendre polynomials are also solutions of the differential equation in special cases, which, by virtue of being polynomials, have a large number of additional properties, mathematical structure, and applications. For these polynomial solutions, see the separate Wikipedia articles.
In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields.
The Touchard polynomials, studied by Jacques Touchard (1939), also called the exponential polynomials or Bell polynomials, comprise a polynomial sequence of binomial type defined by
In mathematics, the Clausen function, introduced by Thomas Clausen (1832), is a transcendental, special function of a single variable. It can variously be expressed in the form of a definite integral, a trigonometric series, and various other forms. It is intimately connected with the polylogarithm, inverse tangent integral, polygamma function, Riemann zeta function, Dirichlet eta function, and Dirichlet beta function.
In mathematics, a multiple integral is a definite integral of a function of several real variables, for instance, f(x, y) or f(x, y, z). Integrals of a function of two variables over a region in are called double integrals, and integrals of a function of three variables over a region in are called triple integrals. For multiple integrals of a single-variable function, see the Cauchy formula for repeated integration.
In the mathematical theory of bifurcations, a Hopfbifurcation is a critical point where a system's stability switches and a periodic solution arises. More accurately, it is a local bifurcation in which a fixed point of a dynamical system loses stability, as a pair of complex conjugate eigenvalues—of the linearization around the fixed point—crosses the complex plane imaginary axis. Under reasonably generic assumptions about the dynamical system, a small-amplitude limit cycle branches from the fixed point.
The Wigner D-matrix is a unitary matrix in an irreducible representation of the groups SU(2) and SO(3). It was introduced in 1927 by Eugene Wigner, and plays a fundamental role in the quantum mechanical theory of angular momentum. The complex conjugate of the D-matrix is an eigenfunction of the Hamiltonian of spherical and symmetric rigid rotors. The letter D stands for Darstellung, which means "representation" in German.
In mathematics, the Schur orthogonality relations, which were proven by Issai Schur through Schur's lemma, express a central fact about representations of finite groups. They admit a generalization to the case of compact groups in general, and in particular compact Lie groups, such as the rotation group SO(3).
In physics and mathematics, the solid harmonics are solutions of the Laplace equation in spherical polar coordinates, assumed to be (smooth) functions . There are two kinds: the regular solid harmonics, which are well-defined at the origin and the irregular solid harmonics, which are singular at the origin. Both sets of functions play an important role in potential theory, and are obtained by rescaling spherical harmonics appropriately:
In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.
Geographical distance or geodetic distance is the distance measured along the surface of the earth. The formulae in this article calculate distances between points which are defined by geographical coordinates in terms of latitude and longitude. This distance is an element in solving the second (inverse) geodetic problem.
In mathematics, the Meixner–Pollaczek polynomials are a family of orthogonal polynomials P(λ)
n(x,φ) introduced by Meixner (1934), which up to elementary changes of variables are the same as the Pollaczek polynomialsPλ
n(x,a,b) rediscovered by Pollaczek (1949) in the case λ=1/2, and later generalized by him.
In mathematics, Jacobi polynomials are a class of classical orthogonal polynomials. They are orthogonal with respect to the weight on the interval . The Gegenbauer polynomials, and thus also the Legendre, Zernike and Chebyshev polynomials, are special cases of the Jacobi polynomials.
In optics, the Fraunhofer diffraction equation is used to model the diffraction of waves when the diffraction pattern is viewed at a long distance from the diffracting object, and also when it is viewed at the focal plane of an imaging lens.
In mathematics, a linear recurrence with constant coefficients sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence. The polynomial's linearity means that each of its terms has degree 0 or 1. A linear recurrence denotes the evolution of some variable over time, with the current time period or discrete moment in time denoted as t, one period earlier denoted as t − 1, one period later as t + 1, etc.
The Fokas method, or unified transform, is an algorithmic procedure for analysing boundary value problems for linear partial differential equations and for an important class of nonlinear PDEs belonging to the so-called integrable systems. It is named after Greek mathematician Athanassios S. Fokas.