Wigner D-matrix

Last updated

The Wigner D-matrix is a unitary matrix in an irreducible representation of the groups SU(2) and SO(3). It was introduced in 1927 by Eugene Wigner, and plays a fundamental role in the quantum mechanical theory of angular momentum. The complex conjugate of the D-matrix is an eigenfunction of the Hamiltonian of spherical and symmetric rigid rotors. The letter D stands for Darstellung, which means "representation" in German.

Contents

Definition of the Wigner D-matrix

Let Jx, Jy, Jz be generators of the Lie algebra of SU(2) and SO(3). In quantum mechanics, these three operators are the components of a vector operator known as angular momentum. Examples are the angular momentum of an electron in an atom, electronic spin, and the angular momentum of a rigid rotor.

In all cases, the three operators satisfy the following commutation relations,

where i is the purely imaginary number and the Planck constant ħ has been set equal to one. The Casimir operator

commutes with all generators of the Lie algebra. Hence, it may be diagonalized together with Jz.

This defines the spherical basis used here. That is, there is a complete set of kets (i.e. orthonormal basis of joint eigenvectors labelled by quantum numbers that define the eigenvalues) with

where j = 0, 1/2, 1, 3/2, 2, ... for SU(2), and j = 0, 1, 2, ... for SO(3). In both cases, m = −j, −j + 1, ..., j.

A 3-dimensional rotation operator can be written as

where α, β, γ are Euler angles (characterized by the keywords: z-y-z convention, right-handed frame, right-hand screw rule, active interpretation).

The Wigner D-matrix is a unitary square matrix of dimension 2j + 1 in this spherical basis with elements

where

is an element of the orthogonal Wigner's (small) d-matrix.

That is, in this basis,

is diagonal, like the γ matrix factor, but unlike the above β factor.

Wigner (small) d-matrix

Wigner gave the following expression: [1]

The sum over s is over such values that the factorials are nonnegative, i.e. , .

Note: The d-matrix elements defined here are real. In the often-used z-x-z convention of Euler angles, the factor in this formula is replaced by causing half of the functions to be purely imaginary. The realness of the d-matrix elements is one of the reasons that the z-y-z convention, used in this article, is usually preferred in quantum mechanical applications.

The d-matrix elements are related to Jacobi polynomials with nonnegative and [2] Let

If

Then, with the relation is

where

It is also useful to consider the relations , where and , which lead to:

Properties of the Wigner D-matrix

The complex conjugate of the D-matrix satisfies a number of differential properties that can be formulated concisely by introducing the following operators with

which have quantum mechanical meaning: they are space-fixed rigid rotor angular momentum operators.

Further,

which have quantum mechanical meaning: they are body-fixed rigid rotor angular momentum operators.

The operators satisfy the commutation relations

and the corresponding relations with the indices permuted cyclically. The satisfy anomalous commutation relations (have a minus sign on the right hand side).

The two sets mutually commute,

and the total operators squared are equal,

Their explicit form is,

The operators act on the first (row) index of the D-matrix,

The operators act on the second (column) index of the D-matrix,

and, because of the anomalous commutation relation the raising/lowering operators are defined with reversed signs,

Finally,

In other words, the rows and columns of the (complex conjugate) Wigner D-matrix span irreducible representations of the isomorphic Lie algebras generated by and .

An important property of the Wigner D-matrix follows from the commutation of with the time reversal operator T,

or

Here, we used that is anti-unitary (hence the complex conjugation after moving from ket to bra), and .

A further symmetry implies

Orthogonality relations

The Wigner D-matrix elements form a set of orthogonal functions of the Euler angles and :

This is a special case of the Schur orthogonality relations.

Crucially, by the Peter–Weyl theorem, they further form a complete set.

The fact that are matrix elements of a unitary transformation from one spherical basis to another is represented by the relations: [3]

The group characters for SU(2) only depend on the rotation angle β, being class functions, so, then, independent of the axes of rotation,

and consequently satisfy simpler orthogonality relations, through the Haar measure of the group, [4]

The completeness relation (worked out in the same reference, (3.95)) is

whence, for

Kronecker product of Wigner D-matrices, Clebsch–Gordan series

The set of Kronecker product matrices

forms a reducible matrix representation of the groups SO(3) and SU(2). Reduction into irreducible components is by the following equation: [3]

The symbol is a Clebsch–Gordan coefficient.

Relation to spherical harmonics and Legendre polynomials

For integer values of , the D-matrix elements with second index equal to zero are proportional to spherical harmonics and associated Legendre polynomials, normalized to unity and with Condon and Shortley phase convention:

This implies the following relationship for the d-matrix:

A rotation of spherical harmonics then is effectively a composition of two rotations,

When both indices are set to zero, the Wigner D-matrix elements are given by ordinary Legendre polynomials:

In the present convention of Euler angles, is a longitudinal angle and is a colatitudinal angle (spherical polar angles in the physical definition of such angles). This is one of the reasons that the z-y-z convention is used frequently in molecular physics. From the time-reversal property of the Wigner D-matrix follows immediately

There exists a more general relationship to the spin-weighted spherical harmonics:

[5]

Connection with transition probability under rotations

The absolute square of an element of the D-matrix,

gives the probability that a system with spin prepared in a state with spin projection along some direction will be measured to have a spin projection along a second direction at an angle to the first direction. The set of quantities itself forms a real symmetric matrix, that depends only on the Euler angle , as indicated.

Remarkably, the eigenvalue problem for the matrix can be solved completely: [6] [7]

Here, the eigenvector, , is a scaled and shifted discrete Chebyshev polynomial, and the corresponding eigenvalue, , is the Legendre polynomial.

Relation to Bessel functions

In the limit when we have

where is the Bessel function and is finite.

List of d-matrix elements

Using sign convention of Wigner, et al. the d-matrix elements for j = 1/2, 1, 3/2, and 2 are given below.

For j = 1/2

For j = 1

For j = 3/2

For j = 2 [8]

Wigner d-matrix elements with swapped lower indices are found with the relation:

Symmetries and special cases

See also

Related Research Articles

<span class="mw-page-title-main">Pauli matrices</span> Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are traceless, Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

Unit quaternions, known as versors, provide a convenient mathematical notation for representing spatial orientations and rotations of elements in three dimensional space. Specifically, they encode information about an axis-angle rotation about an arbitrary axis. Rotation and orientation quaternions have applications in computer graphics, computer vision, robotics, navigation, molecular dynamics, flight dynamics, orbital mechanics of satellites, and crystallographic texture analysis.

<span class="mw-page-title-main">Beta function</span> Mathematical function

In mathematics, the beta function, also called the Euler integral of the first kind, is a special function that is closely related to the gamma function and to binomial coefficients. It is defined by the integral

In mathematics, the Mellin transform is an integral transform that may be regarded as the multiplicative version of the two-sided Laplace transform. This integral transform is closely connected to the theory of Dirichlet series, and is often used in number theory, mathematical statistics, and the theory of asymptotic expansions; it is closely related to the Laplace transform and the Fourier transform, and the theory of the gamma function and allied special functions.

In linear algebra, a rotation matrix is a transformation matrix that is used to perform a rotation in Euclidean space. For example, using the convention below, the matrix

In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.

In rotordynamics, the rigid rotor is a mechanical model of rotating systems. An arbitrary rigid rotor is a 3-dimensional rigid object, such as a top. To orient such an object in space requires three angles, known as Euler angles. A special rigid rotor is the linear rotor requiring only two angles to describe, for example of a diatomic molecule. More general molecules are 3-dimensional, such as water, ammonia, or methane.

In particle physics, neutral particle oscillation is the transmutation of a particle with zero electric charge into another neutral particle due to a change of a non-zero internal quantum number, via an interaction that does not conserve that quantum number. Neutral particle oscillations were first investigated in 1954 by Murray Gell-mann and Abraham Pais.

In physics, spherically symmetric spacetimes are commonly used to obtain analytic and numerical solutions to Einstein's field equations in the presence of radially moving matter or energy. Because spherically symmetric spacetimes are by definition irrotational, they are not realistic models of black holes in nature. However, their metrics are considerably simpler than those of rotating spacetimes, making them much easier to analyze.

In general relativity, the Gibbons–Hawking–York boundary term is a term that needs to be added to the Einstein–Hilbert action when the underlying spacetime manifold has a boundary.

A theoretical motivation for general relativity, including the motivation for the geodesic equation and the Einstein field equation, can be obtained from special relativity by examining the dynamics of particles in circular orbits about the Earth. A key advantage in examining circular orbits is that it is possible to know the solution of the Einstein Field Equation a priori. This provides a means to inform and verify the formalism.

In geometry, various formalisms exist to express a rotation in three dimensions as a mathematical transformation. In physics, this concept is applied to classical mechanics where rotational kinematics is the science of quantitative description of a purely rotational motion. The orientation of an object at a given instant is described with the same tools, as it is defined as an imaginary rotation from a reference placement in space, rather than an actually observed rotation from a previous placement in space.

In mathematics, the Schur orthogonality relations, which were proven by Issai Schur through Schur's lemma, express a central fact about representations of finite groups. They admit a generalization to the case of compact groups in general, and in particular compact Lie groups, such as the rotation group SO(3).

<span class="mw-page-title-main">Biarc</span>

A biarc is a smooth curve formed from two circular arcs. In order to make the biarc smooth, the two arcs should have the same tangent at the connecting point where they meet.

<span class="mw-page-title-main">Gravitational lensing formalism</span>

In general relativity, a point mass deflects a light ray with impact parameter by an angle approximately equal to

In physics, Berry connection and Berry curvature are related concepts which can be viewed, respectively, as a local gauge potential and gauge field associated with the Berry phase or geometric phase. The concept was first introduced by S. Pancharatnam as geometric phase and later elaborately explained and popularized by Michael Berry in a paper published in 1984 emphasizing how geometric phases provide a powerful unifying concept in several branches of classical and quantum physics.

<span class="mw-page-title-main">Jacobi polynomials</span> Polynomial sequence

In mathematics, Jacobi polynomials are a class of classical orthogonal polynomials. They are orthogonal with respect to the weight on the interval . The Gegenbauer polynomials, and thus also the Legendre, Zernike and Chebyshev polynomials, are special cases of the Jacobi polynomials.

In mathematics, the Kodaira–Spencer map, introduced by Kunihiko Kodaira and Donald C. Spencer, is a map associated to a deformation of a scheme or complex manifold X, taking a tangent space of a point of the deformation space to the first cohomology group of the sheaf of vector fields on X.

References

  1. Wigner, E. P. (1951) [1931]. Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren. Braunschweig: Vieweg Verlag. OCLC   602430512. Translated into English by Group Theory and its Application to the Quantum Mechanics of Atomic Spectra. Translated by Griffin, J.J. Elsevier. 2013 [1959]. ISBN   978-1-4832-7576-5.
  2. Biedenharn, L. C.; Louck, J. D. (1981). Angular Momentum in Quantum Physics. Reading: Addison-Wesley. ISBN   0-201-13507-8.
  3. 1 2 Rose, Morris Edgar (1995) [1957]. Elementary theory of angular momentum. Dover. ISBN   0-486-68480-6. OCLC   31374243.
  4. Schwinger, J. (January 26, 1952). On Angular Momentum (Technical report). Harvard University, Nuclear Development Associates. doi:10.2172/4389568. NYO-3071, TRN: US200506%%295.
  5. Shiraishi, M. (2013). "Appendix A: Spin-Weighted Spherical Harmonic Function" (PDF). Probing the Early Universe with the CMB Scalar, Vector and Tensor Bispectrum (PhD). Nagoya University. pp. 153–4. ISBN   978-4-431-54180-6.
  6. Meckler, A. (1958). "Majorana formula". Physical Review. 111 (6): 1447. doi:10.1103/PhysRev.111.1447.
  7. Mermin, N.D.; Schwarz, G.M. (1982). "Joint distributions and local realism in the higher-spin Einstein-Podolsky-Rosen experiment". Foundations of Physics. 12 (2): 101. doi:10.1007/BF00736844. S2CID   121648820.
  8. Edén, M. (2003). "Computer simulations in solid-state NMR. I. Spin dynamics theory". Concepts in Magnetic Resonance Part A. 17A (1): 117–154. doi:10.1002/cmr.a.10061.