Digital Library of Mathematical Functions

Last updated

The Digital Library of Mathematical Functions (DLMF) is an online project at the National Institute of Standards and Technology (NIST) to develop a database of mathematical reference data for special functions and their applications. It is intended as an update of Abramowitz's and Stegun's Handbook of Mathematical Functions (A&S). [1] It was published online [2] on 7 May 2010, though some chapters appeared earlier. In the same year it appeared at Cambridge University Press under the title NIST Handbook of Mathematical Functions. [3]

Contents

In contrast to A&S, whose initial print run was done by the U.S. Government Printing Office and was in the public domain, NIST asserts that it holds copyright to the DLMF under Title 17 USC 105 of the U.S. Code. [4]

See also

Related Research Articles

<i>Abramowitz and Stegun</i> 1964 mathematical reference work edited by M. Abramowitz and I. Stegun

Abramowitz and Stegun (AS) is the informal name of a 1964 mathematical reference work edited by Milton Abramowitz and Irene Stegun of the United States National Bureau of Standards (NBS), now the National Institute of Standards and Technology (NIST). Its full title is Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. A digital successor to the Handbook was released as the "Digital Library of Mathematical Functions" (DLMF) on 11 May 2010, along with a printed version, the NIST Handbook of Mathematical Functions, published by Cambridge University Press.

In mathematics, the local Heun function is the solution of Heun's differential equation that is holomorphic and 1 at the singular point z = 0. The local Heun function is called a Heun function, denoted Hf, if it is also regular at z = 1, and is called a Heun polynomial, denoted Hp, if it is regular at all three finite singular points z = 0, 1, a.

In mathematics, conical functions or Mehler functions are functions which can be expressed in terms of Legendre functions of the first and second kind, and

Spheroidal wave functions are solutions of the Helmholtz equation that are found by writing the equation in spheroidal coordinates and applying the technique of separation of variables, just like the use of spherical coordinates lead to spherical harmonics. They are called oblate spheroidal wave functions if oblate spheroidal coordinates are used and prolate spheroidal wave functions if prolate spheroidal coordinates are used. If instead of the Helmholtz equation, the Laplace equation is solved in spheroidal coordinates using the method of separation of variables, the spheroidal wave functions reduce to the spheroidal harmonics. With oblate spheroidal coordinates, the solutions are called oblate harmonics and with prolate spheroidal coordinates, prolate harmonics. Both type of spheroidal harmonics are expressible in terms of Legendre functions.

In mathematics, the q-Racah polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme, introduced by Askey & Wilson (1979). Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.

In mathematics, the q-Charlier polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.

In mathematics, the theta function of a lattice is a function whose coefficients give the number of vectors of a given norm.

<span class="mw-page-title-main">Frank W. J. Olver</span>

Frank William John Olver was a professor of mathematics at the Institute for Physical Science and Technology and Department of Mathematics at the University of Maryland who worked on asymptotic analysis, special functions, and numerical analysis. He was the editor in chief of the NIST Digital Library of Mathematical Functions.

In mathematics, the Heine–Stieltjes polynomials or Stieltjes polynomials, introduced by T. J. Stieltjes (1885), are polynomial solutions of a second-order Fuchsian equation, a differential equation all of whose singularities are regular. The Fuchsian equation has the form

<span class="mw-page-title-main">Continuous dual Hahn polynomials</span> Marhematics

In mathematics, the continuous dual Hahn polynomials are a family of orthogonal polynomials in the Askey scheme of hypergeometric orthogonal polynomials. They are defined in terms of generalized hypergeometric functions by

In mathematics, the continuous dual q-Hahn polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.

In mathematics, the Al-Salam–Chihara polynomialsQn(x;a,b;q) are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme, introduced by Al-Salam and Chihara (1976). Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14.8) give a detailed list of the properties of Al-Salam–Chihara polynomials.

In mathematics, the big q-Laguerre polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.

In mathematics, the little q-Laguerre polynomialspn(x;a|q) or Wall polynomialsWn(x; b,q) are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme closely related to a continued fraction studied by Wall (1941). (The term "Wall polynomial" is also used for an unrelated Wall polynomial in the theory of classical groups.) Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.

In mathematics, the q-Meixner polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.

In mathematics, the quantum q-Krawtchouk polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.

In mathematics, the Ince equation, named for Edward Lindsay Ince, is the differential equation

In mathematics, Ferrers functions are certain special functions defined in terms of hypergeometric functions. They are named after Norman Macleod Ferrers.

<span class="mw-page-title-main">Pearcey integral</span> Class of canonical diffraction integrals

In mathematics, the Pearcey integral is defined as

Bonita Valerie Saunders is an American mathematician specializing in mathematical visualization. She works at the National Institute of Standards and Technology in the Applied and Computational Mathematics Division of the Information Technology Laboratory, where she contributes to the Digital Library of Mathematical Functions as the Visualization Editor and the principal designer of visualizations and graphs.

References

  1. Boisvert, Ronald F.; Clark, Charles W.; Lozier, Daniel W.; Olver, Frank William John (2011). "A Special Functions Handbook for the Digital Age" (PDF). Notices of the American Mathematical Society . 58 (7): 905–911. Archived (PDF) from the original on 2021-09-09. Retrieved 2016-03-13.
  2. "NIST Digital Library of Mathematical Functions". National Institute of Standards and Technology (NIST). Retrieved 2023-07-24.
  3. Olver, Frank William John; Lozier, Daniel W.; Boisvert, Ronald F.; Clark, Charles W., eds. (2010). NIST Handbook of Mathematical Functions. National Institute of Standards and Technology (NIST), U.S. Department of Commerce, Cambridge University Press. ISBN   978-0-521-19225-5. MR   2723248.
  4. "DLMF: Notices". NIST. Retrieved 2010-12-28.

Further reading