In mathematics, the Kronecker delta (named after Leopold Kronecker) is a function of two variables, usually just non-negative integers. The function is 1 if the variables are equal, and 0 otherwise:
or with use of Iverson brackets:
For example, because , whereas because .
The Kronecker delta appears naturally in many areas of mathematics, physics, engineering and computer science, as a means of compactly expressing its definition above.
In linear algebra, the identity matrix has entries equal to the Kronecker delta:
where and take the values , and the inner product of vectors can be written as
Here the Euclidean vectors are defined as n-tuples: and and the last step is obtained by using the values of the Kronecker delta to reduce the summation over .
It is common for i and j to be restricted to a set of the form {1, 2, ..., n} or {0, 1, ..., n − 1}, but the Kronecker delta can be defined on an arbitrary set.
The following equations are satisfied:
Therefore, the matrix δ can be considered as an identity matrix.
Another useful representation is the following form:
This can be derived using the formula for the geometric series.
Using the Iverson bracket:
Often, a single-argument notation is used, which is equivalent to setting :
In linear algebra, it can be thought of as a tensor, and is written . Sometimes the Kronecker delta is called the substitution tensor. [1]
In the study of digital signal processing (DSP), the unit sample function represents a special case of a 2-dimensional Kronecker delta function where the Kronecker indices include the number zero, and where one of the indices is zero. In this case:
Or more generally where:
However, this is only a special case. In tensor calculus, it is more common to number basis vectors in a particular dimension starting with index 1, rather than index 0. In this case, the relation does not exist, and in fact, the Kronecker delta function and the unit sample function are different functions that overlap in the specific case where the indices include the number 0, the number of indices is 2, and one of the indices has the value of zero.
While the discrete unit sample function and the Kronecker delta function use the same letter, they differ in the following ways. For the discrete unit sample function, it is more conventional to place a single integer index in square braces; in contrast the Kronecker delta can have any number of indexes. Further, the purpose of the discrete unit sample function is different from the Kronecker delta function. In DSP, the discrete unit sample function is typically used as an input function to a discrete system for discovering the system function of the system which will be produced as an output of the system. In contrast, the typical purpose of the Kronecker delta function is for filtering terms from an Einstein summation convention.
The discrete unit sample function is more simply defined as:
In addition, the Dirac delta function is often confused for both the Kronecker delta function and the unit sample function. The Dirac delta is defined as:
Unlike the Kronecker delta function and the unit sample function , the Dirac delta function does not have an integer index, it has a single continuous non-integer value t.
To confuse matters more, the unit impulse function is sometimes used to refer to either the Dirac delta function , or the unit sample function .
The Kronecker delta has the so-called sifting property that for :
and if the integers are viewed as a measure space, endowed with the counting measure, then this property coincides with the defining property of the Dirac delta function
and in fact Dirac's delta was named after the Kronecker delta because of this analogous property. [2] In signal processing it is usually the context (discrete or continuous time) that distinguishes the Kronecker and Dirac "functions". And by convention, generally indicates continuous time (Dirac), whereas arguments like , , , , , and are usually reserved for discrete time (Kronecker). Another common practice is to represent discrete sequences with square brackets; thus: . The Kronecker delta is not the result of directly sampling the Dirac delta function.
The Kronecker delta forms the multiplicative identity element of an incidence algebra. [3]
In probability theory and statistics, the Kronecker delta and Dirac delta function can both be used to represent a discrete distribution. If the support of a distribution consists of points , with corresponding probabilities , then the probability mass function of the distribution over can be written, using the Kronecker delta, as
Equivalently, the probability density function of the distribution can be written using the Dirac delta function as
Under certain conditions, the Kronecker delta can arise from sampling a Dirac delta function. For example, if a Dirac delta impulse occurs exactly at a sampling point and is ideally lowpass-filtered (with cutoff at the critical frequency) per the Nyquist–Shannon sampling theorem, the resulting discrete-time signal will be a Kronecker delta function.
If it is considered as a type tensor, the Kronecker tensor can be written with a covariant index and contravariant index :
This tensor represents:
The generalized Kronecker delta or multi-index Kronecker delta of order is a type tensor that is completely antisymmetric in its upper indices, and also in its lower indices.
Two definitions that differ by a factor of are in use. Below, the version is presented has nonzero components scaled to be . The second version has nonzero components that are , with consequent changes scaling factors in formulae, such as the scaling factors of in § Properties of the generalized Kronecker delta below disappearing. [4]
In terms of the indices, the generalized Kronecker delta is defined as: [5] [6]
Let be the symmetric group of degree , then:
Using anti-symmetrization:
In terms of a determinant: [7]
Using the Laplace expansion (Laplace's formula) of determinant, it may be defined recursively: [8]
where the caron, , indicates an index that is omitted from the sequence.
When (the dimension of the vector space), in terms of the Levi-Civita symbol:
More generally, for , using the Einstein summation convention:
Kronecker Delta contractions depend on the dimension of the space. For example,
where d is the dimension of the space. From this relation the full contracted delta is obtained as
The generalization of the preceding formulas is[ citation needed ]
The generalized Kronecker delta may be used for anti-symmetrization:
From the above equations and the properties of anti-symmetric tensors, we can derive the properties of the generalized Kronecker delta:
which are the generalized version of formulae written in § Properties . The last formula is equivalent to the Cauchy–Binet formula.
Reducing the order via summation of the indices may be expressed by the identity [9]
Using both the summation rule for the case and the relation with the Levi-Civita symbol, the summation rule of the Levi-Civita symbol is derived:
The 4D version of the last relation appears in Penrose's spinor approach to general relativity [10] that he later generalized, while he was developing Aitken's diagrams, [11] to become part of the technique of Penrose graphical notation. [12] Also, this relation is extensively used in S-duality theories, especially when written in the language of differential forms and Hodge duals.
For any integer , using a standard residue calculation we can write an integral representation for the Kronecker delta as the integral below, where the contour of the integral goes counterclockwise around zero. This representation is also equivalent to a definite integral by a rotation in the complex plane.
The Kronecker comb function with period is defined (using DSP notation) as:
where and are integers. The Kronecker comb thus consists of an infinite series of unit impulses N units apart, and includes the unit impulse at zero. It may be considered to be the discrete analog of the Dirac comb.
The Kronecker delta is also called degree of mapping of one surface into another. [13] Suppose a mapping takes place from surface Suvw to Sxyz that are boundaries of regions, Ruvw and Rxyz which is simply connected with one-to-one correspondence. In this framework, if s and t are parameters for Suvw, and Suvw to Suvw are each oriented by the outer normal n:
while the normal has the direction of
Let x = x(u, v, w), y = y(u, v, w), z = z(u, v, w) be defined and smooth in a domain containing Suvw, and let these equations define the mapping of Suvw onto Sxyz. Then the degree δ of mapping is 1/4π times the solid angle of the image S of Suvw with respect to the interior point of Sxyz, O. If O is the origin of the region, Rxyz, then the degree, δ is given by the integral:
In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.
In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1⁄2 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way.
The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields. This density and flux of energy and momentum are the sources of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity.
Noether's theorem or Noether's first theorem states that every differentiable symmetry of the action of a physical system with conservative forces has a corresponding conservation law. The theorem was proven by mathematician Emmy Noether in 1915 and published in 1918. The action of a physical system is the integral over time of a Lagrangian function, from which the system's behavior can be determined by the principle of least action. This theorem only applies to continuous and smooth symmetries over physical space.
In mathematics, particularly in linear algebra, tensor analysis, and differential geometry, the Levi-Civita symbol or Levi-Civita epsilon represents a collection of numbers; defined from the sign of a permutation of the natural numbers 1, 2, ..., n, for some positive integer n. It is named after the Italian mathematician and physicist Tullio Levi-Civita. Other names include the permutation symbol, antisymmetric symbol, or alternating symbol, which refer to its antisymmetric property and definition in terms of permutations.
In special relativity, a four-vector is an object with four components, which transform in a specific way under Lorentz transformations. Specifically, a four-vector is an element of a four-dimensional vector space considered as a representation space of the standard representation of the Lorentz group, the representation. It differs from a Euclidean vector in how its magnitude is determined. The transformations that preserve this magnitude are the Lorentz transformations, which include spatial rotations and boosts.
In physics, Hooke's law is an empirical law which states that the force needed to extend or compress a spring by some distance scales linearly with respect to that distance—that is, Fs = kx, where k is a constant factor characteristic of the spring, and x is small compared to the total possible deformation of the spring. The law is named after 17th-century British physicist Robert Hooke. He first stated the law in 1676 as a Latin anagram. He published the solution of his anagram in 1678 as: ut tensio, sic vis. Hooke states in the 1678 work that he was aware of the law since 1660.
Linear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.
In mathematics and theoretical physics, the term quantum group denotes one of a few different kinds of noncommutative algebras with additional structure. These include Drinfeld–Jimbo type quantum groups, compact matrix quantum groups, and bicrossproduct quantum groups. Despite their name, they do not themselves have a natural group structure, though they are in some sense 'close' to a group.
In quantum mechanics and quantum field theory, the propagator is a function that specifies the probability amplitude for a particle to travel from one place to another in a given period of time, or to travel with a certain energy and momentum. In Feynman diagrams, which serve to calculate the rate of collisions in quantum field theory, virtual particles contribute their propagator to the rate of the scattering event described by the respective diagram. These may also be viewed as the inverse of the wave operator appropriate to the particle, and are, therefore, often called (causal) Green's functions.
In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.
In differential geometry, the four-gradient is the four-vector analogue of the gradient from vector calculus.
In theoretical physics, a source field is a background field coupled to the original field as
In statistics, the multivariate t-distribution is a multivariate probability distribution. It is a generalization to random vectors of the Student's t-distribution, which is a distribution applicable to univariate random variables. While the case of a random matrix could be treated within this structure, the matrix t-distribution is distinct and makes particular use of the matrix structure.
In mathematical physics, the Belinfante–Rosenfeld tensor is a modification of the energy–momentum tensor that is constructed from the canonical energy–momentum tensor and the spin current so as to be symmetric yet still conserved.
In probability theory and statistics, the generalized multivariate log-gamma (G-MVLG) distribution is a multivariate distribution introduced by Demirhan and Hamurkaroglu in 2011. The G-MVLG is a flexible distribution. Skewness and kurtosis are well controlled by the parameters of the distribution. This enables one to control dispersion of the distribution. Because of this property, the distribution is effectively used as a joint prior distribution in Bayesian analysis, especially when the likelihood is not from the location-scale family of distributions such as normal distribution.
Stochastic portfolio theory (SPT) is a mathematical theory for analyzing stock market structure and portfolio behavior introduced by E. Robert Fernholz in 2002. It is descriptive as opposed to normative, and is consistent with the observed behavior of actual markets. Normative assumptions, which serve as a basis for earlier theories like modern portfolio theory (MPT) and the capital asset pricing model (CAPM), are absent from SPT.
Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.
In relativistic quantum mechanics and quantum field theory, the Joos–Weinberg equation is a relativistic wave equation applicable to free particles of arbitrary spin j, an integer for bosons or half-integer for fermions. The solutions to the equations are wavefunctions, mathematically in the form of multi-component spinor fields. The spin quantum number is usually denoted by s in quantum mechanics, however in this context j is more typical in the literature.
The Batchelor–Chandrasekhar equation is the evolution equation for the scalar functions, defining the two-point velocity correlation tensor of a homogeneous axisymmetric turbulence, named after George Batchelor and Subrahmanyan Chandrasekhar. They developed the theory of homogeneous axisymmetric turbulence based on Howard P. Robertson's work on isotropic turbulence using an invariant principle. This equation is an extension of Kármán–Howarth equation from isotropic to axisymmetric turbulence.