Iverson bracket

Last updated

In mathematics, the Iverson bracket, named after Kenneth E. Iverson, is a notation that generalises the Kronecker delta, which is the Iverson bracket of the statement x = y. It maps any statement to a function of the free variables in that statement. This function is defined to take the value 1 for the values of the variables for which the statement is true, and takes the value 0 otherwise. It is generally denoted by putting the statement inside square brackets: In other words, the Iverson bracket of a statement is the indicator function of the set of values for which the statement is true.

Contents

The Iverson bracket allows using capital-sigma notation without restriction on the summation index. That is, for any property of the integer , one can rewrite the restricted sum in the unrestricted form . With this convention, does not need to be defined for the values of k for which the Iverson bracket equals 0; that is, a summand must evaluate to 0 regardless of whether is defined.

The notation was originally introduced by Kenneth E. Iverson in his programming language APL, [1] [2] though restricted to single relational operators enclosed in parentheses, while the generalisation to arbitrary statements, notational restriction to square brackets, and applications to summation, was advocated by Donald Knuth to avoid ambiguity in parenthesized logical expressions. [3]

Properties

There is a direct correspondence between arithmetic on Iverson brackets, logic, and set operations. For instance, let A and B be sets and any property of integers; then we have

Examples

The notation allows moving boundary conditions of summations (or integrals) as a separate factor into the summand, freeing up space around the summation operator, but more importantly allowing it to be manipulated algebraically.

Double-counting rule

We mechanically derive a well-known sum manipulation rule using Iverson brackets:

Summation interchange

The well-known rule is likewise easily derived:

Counting

For instance, Euler's totient function that counts the number of positive integers up to n which are coprime to n can be expressed by

Simplification of special cases

Another use of the Iverson bracket is to simplify equations with special cases. For example, the formula

is valid for n> 1 but is off by 1/2 for n = 1. To get an identity valid for all positive integers n (i.e., all values for which is defined), a correction term involving the Iverson bracket may be added:

Common functions

Many common functions, especially those with a natural piecewise definition, may be expressed in terms of the Iverson bracket. The Kronecker delta notation is a specific case of Iverson notation when the condition is equality. That is,

The indicator function, often denoted , or , is an Iverson bracket with set membership as its condition:

The Heaviside step function, sign function, [1] and absolute value function are also easily expressed in this notation:

and

The comparison functions max and min (returning the larger or smaller of two arguments) may be written as and

The floor and ceiling functions can be expressed as and where the index of summation is understood to range over all the integers.

The ramp function can be expressed

The trichotomy of the reals is equivalent to the following identity:

The Möbius function has the property (and can be defined by recurrence as [4] )

Formulation in terms of usual functions

In the 1830s, Guglielmo dalla Sommaja used the expression to represent what now would be written ; he also used variants, such as for . [3] Following one common convention, those quantities are equal where defined: is 1 if x > 0, is 0 if x = 0, and is undefined otherwise.

Notational variations

In addition to the now-standard square brackets [ · ] , and the original parentheses ( · ) , blackboard bold brackets have also been used, e.g. ⟦ · ⟧ , as well as other unusual forms of bracketing marks available in the publisher's typeface, accompanied by a marginal note.

See also

Related Research Articles

<span class="mw-page-title-main">Associative property</span> Property of a mathematical operation

In mathematics, the associative property is a property of some binary operations, which means that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement for expressions in logical proofs.

In number theory, an arithmetic, arithmetical, or number-theoretic function is generally any function f(n) whose domain is the positive integers and whose range is a subset of the complex numbers. Hardy & Wright include in their definition the requirement that an arithmetical function "expresses some arithmetical property of n". There is a larger class of number-theoretic functions that do not fit this definition, for example, the prime-counting functions. This article provides links to functions of both classes.

<span class="mw-page-title-main">Euler's totient function</span> Number of integers coprime to and not exceeding n

In number theory, Euler's totient function counts the positive integers up to a given integer n that are relatively prime to n. It is written using the Greek letter phi as or , and may also be called Euler's phi function. In other words, it is the number of integers k in the range 1 ≤ kn for which the greatest common divisor gcd(n, k) is equal to 1. The integers k of this form are sometimes referred to as totatives of n.

<span class="mw-page-title-main">Floor and ceiling functions</span> Nearest integers from a number

In mathematics, the floor function (or greatest integer function) is the function that takes as input a real number x, and gives as output the greatest integer less than or equal to x, denoted x or floor(x). Similarly, the ceiling function maps x to the smallest integer greater than or equal to x, denoted x or ceil(x).

A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula. As formulas are entirely constituted with symbols of various types, many symbols are needed for expressing all mathematics.

In mathematics, a generating function is a representation of an infinite sequence of numbers as the coefficients of a formal power series. Unlike an ordinary series, the formal power series is not required to converge: in fact, the generating function is not actually regarded as a function, and the "variable" remains an indeterminate. Generating functions were first introduced by Abraham de Moivre in 1730, in order to solve the general linear recurrence problem. One can generalize to formal power series in more than one indeterminate, to encode information about infinite multi-dimensional arrays of numbers.

In mathematics, the Kronecker delta is a function of two variables, usually just non-negative integers. The function is 1 if the variables are equal, and 0 otherwise:

In mathematical analysis, Hölder's inequality, named after Otto Hölder, is a fundamental inequality between integrals and an indispensable tool for the study of Lp spaces.

In mathematics, particularly in linear algebra, tensor analysis, and differential geometry, the Levi-Civita symbol or Levi-Civita epsilon represents a collection of numbers; defined from the sign of a permutation of the natural numbers 1, 2, ..., n, for some positive integer n. It is named after the Italian mathematician and physicist Tullio Levi-Civita. Other names include the permutation symbol, antisymmetric symbol, or alternating symbol, which refer to its antisymmetric property and definition in terms of permutations.

<span class="mw-page-title-main">Indicator function</span> Mathematical function characterizing set membership

In mathematics, an indicator function or a characteristic function of a subset of a set is a function that maps elements of the subset to one, and all other elements to zero. That is, if A is a subset of some set X, then if and otherwise, where is a common notation for the indicator function. Other common notations are and

In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total. Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.

<span class="mw-page-title-main">Differential operator</span> Typically linear operator defined in terms of differentiation of functions

In mathematics, a differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation that accepts a function and returns another function.

<span class="mw-page-title-main">Poisson bracket</span> Operation in Hamiltonian mechanics

In mathematics and classical mechanics, the Poisson bracket is an important binary operation in Hamiltonian mechanics, playing a central role in Hamilton's equations of motion, which govern the time evolution of a Hamiltonian dynamical system. The Poisson bracket also distinguishes a certain class of coordinate transformations, called canonical transformations, which map canonical coordinate systems into canonical coordinate systems. A "canonical coordinate system" consists of canonical position and momentum variables that satisfy canonical Poisson bracket relations. The set of possible canonical transformations is always very rich. For instance, it is often possible to choose the Hamiltonian itself as one of the new canonical momentum coordinates.

<span class="mw-page-title-main">Lindemann–Weierstrass theorem</span> On algebraic independence of exponentials of linearly independent algebraic numbers over Q

In transcendental number theory, the Lindemann–Weierstrass theorem is a result that is very useful in establishing the transcendence of numbers. It states the following:

In the field of mathematics, norms are defined for elements within a vector space. Specifically, when the vector space comprises matrices, such norms are referred to as matrix norms. Matrix norms differ from vector norms in that they must also interact with matrix multiplication.

The following are important identities involving derivatives and integrals in vector calculus.

In linear algebra, the Laplace expansion, named after Pierre-Simon Laplace, also called cofactor expansion, is an expression of the determinant of an n × n-matrix B as a weighted sum of minors, which are the determinants of some (n − 1) × (n − 1)-submatrices of B. Specifically, for every i, the Laplace expansion along the ith row is the equality where is the entry of the ith row and jth column of B, and is the determinant of the submatrix obtained by removing the ith row and the jth column of B. Similarly, the Laplace expansion along the jth column is the equality (Each identity implies the other, since the determinants of a matrix and its transpose are the same.)

This is a summary of differentiation rules, that is, rules for computing the derivative of a function in calculus.

In number theory, the prime omega functions and count the number of prime factors of a natural number Thereby counts each distinct prime factor, whereas the related function counts the total number of prime factors of honoring their multiplicity. That is, if we have a prime factorization of of the form for distinct primes , then the respective prime omega functions are given by and . These prime factor counting functions have many important number theoretic relations.

The purpose of this page is to catalog new, interesting, and useful identities related to number-theoretic divisor sums, i.e., sums of an arithmetic function over the divisors of a natural number , or equivalently the Dirichlet convolution of an arithmetic function with one:

References

  1. 1 2 Kenneth E. Iverson (1962). A Programming Language. Wiley. p. 11. Retrieved 7 April 2016.
  2. Ronald Graham, Donald Knuth, and Oren Patashnik. Concrete Mathematics , Section 2.1: Notation.
  3. 1 2 Donald Knuth, "Two Notes on Notation", American Mathematical Monthly , Volume 99, Number 5, May 1992, pp. 403–422. (TeX, arXiv : math/9205211).
  4. Ronald Graham, Donald Knuth, and Oren Patashnik. Concrete Mathematics , Section 4.9: Phi and Mu.