Zero to the power of zero, denoted as 00, is a mathematical expression that can take different values depending on the context. In certain areas of mathematics, such as combinatorics and algebra, 00 is conventionally defined as 1 because this assignment simplifies many formulas and ensures consistency in operations involving exponents. For instance, in combinatorics, defining 00 = 1 aligns with the interpretation of choosing 0 elements from a set and simplifies polynomial and binomial expansions.
However, in other contexts, particularly in mathematical analysis, 00 is often considered an indeterminate form. This is because the value of xy as both x and y approach zero can lead to different results based on the limiting process. The expression arises in limit problems and may result in a range of values or diverge to infinity, making it difficult to assign a single consistent value in these cases.
The treatment of 00 also varies across different computer programming languages and software. While many follow the convention of assigning 00 = 1 for practical reasons, others leave it undefined or return errors depending on the context of use, reflecting the ambiguity of the expression in mathematical analysis.
Many widely used formulas involving natural-number exponents require 00 to be defined as 1. For example, the following three interpretations of b0 make just as much sense for b = 0 as they do for positive integers b:
All three of these specialize to give 00 = 1.
When evaluating polynomials, it is convenient to define 00 as 1. A (real) polynomial is an expression of the form a0x0 + ⋅⋅⋅ + anxn, where x is an indeterminate, and the coefficients ai are real numbers. Polynomials are added termwise, and multiplied by applying the distributive law and the usual rules for exponents. With these operations, polynomials form a ring R[x]. The multiplicative identity of R[x] is the polynomial x0; that is, x0 times any polynomial p(x) is just p(x). [2] Also, polynomials can be evaluated by specializing x to a real number. More precisely, for any given real number r, there is a unique unital R-algebra homomorphism evr : R[x] → R such that evr(x) = r. Because evr is unital, evr(x0) = 1. That is, r0 = 1 for each real number r, including 0. The same argument applies with R replaced by any ring. [3]
Defining 00 = 1 is necessary for many polynomial identities. For example, the binomial theorem holds for x = 0 only if 00 = 1. [4]
Similarly, rings of power series require x0 to be defined as 1 for all specializations of x. For example, identities like and hold for x = 0 only if 00 = 1. [5]
In order for the polynomial x0 to define a continuous function R → R, one must define 00 = 1.
In calculus, the power rule is valid for n = 1 at x = 0 only if 00 = 1.
Limits involving algebraic operations can often be evaluated by replacing subexpressions with their limits; if the resulting expression does not determine the original limit, the expression is known as an indeterminate form. [6] The expression 00 is an indeterminate form: Given real-valued functions f(t) and g(t) approaching 0 (as t approaches a real number or ±∞) with f(t) > 0, the limit of f(t)g(t) can be any non-negative real number or +∞, or it can diverge, depending on f and g. For example, each limit below involves a function f(t)g(t) with f(t), g(t) → 0 as t → 0+ (a one-sided limit), but their values are different:
Thus, the two-variable function xy, though continuous on the set {(x, y) : x > 0}, cannot be extended to a continuous function on {(x, y) : x > 0} ∪ {(0, 0)}, no matter how one chooses to define 00. [7]
On the other hand, if f and g are analytic functions on an open neighborhood of a number c, then f(t)g(t) → 1 as t approaches c from any side on which f is positive. [8] This and more general results can be obtained by studying the limiting behavior of the function . [9] [10]
In the complex domain, the function zw may be defined for nonzero z by choosing a branch of log z and defining zw as ew log z. This does not define 0w since there is no branch of log z defined at z = 0, let alone in a neighborhood of 0. [11] [12] [13]
In 1752, Euler in Introductio in analysin infinitorum wrote that a0 = 1 [14] and explicitly mentioned that 00 = 1. [15] An annotation attributed [16] to Mascheroni in a 1787 edition of Euler's book Institutiones calculi differentialis [17] offered the "justification"
as well as another more involved justification. In the 1830s, Libri [18] [16] published several further arguments attempting to justify the claim 00 = 1, though these were far from convincing, even by standards of rigor at the time. [19]
Euler, when setting 00 = 1, mentioned that consequently the values of the function 0x take a "huge jump", from ∞ for x < 0, to 1 at x = 0, to 0 for x > 0. [14] In 1814, Pfaff used a squeeze theorem argument to prove that xx → 1 as x → 0+. [8]
On the other hand, in 1821 Cauchy [20] explained why the limit of xy as positive numbers x and y approach 0while being constrained by some fixed relation could be made to assume any value between 0 and ∞ by choosing the relation appropriately. He deduced that the limit of the full two-variable function xy without a specified constraint is "indeterminate". With this justification, he listed 00 along with expressions like 0/0 in a table of indeterminate forms.
Apparently unaware of Cauchy's work, Möbius [8] in 1834, building on Pfaff's argument, claimed incorrectly that f(x)g(x) → 1 whenever f(x),g(x) → 0 as x approaches a number c (presumably f is assumed positive away from c). Möbius reduced to the case c = 0, but then made the mistake of assuming that each of f and g could be expressed in the form Pxn for some continuous function P not vanishing at 0 and some nonnegative integer n, which is true for analytic functions, but not in general. An anonymous commentator pointed out the unjustified step; [21] then another commentator who signed his name simply as "S" provided the explicit counterexamples (e−1/x)x → e−1 and (e−1/x)2x → e−2 as x → 0+ and expressed the situation by writing that "00 can have many different values". [21]
There do not seem to be any authors assigning 00 a specific value other than 1. [22]
The IEEE 754-2008 floating-point standard is used in the design of most floating-point libraries. It recommends a number of operations for computing a power: [25]
pown
(whose exponent is an integer) treats 00 as 1; see § Discrete exponents.pow
(whose intent is to return a non-NaN result when the exponent is an integer, like pown
) treats 00 as 1.powr
treats 00 as NaN (Not-a-Number) due to the indeterminate form; see § Continuous exponents.The pow
variant is inspired by the pow
function from C99, mainly for compatibility. [26] It is useful mostly for languages with a single power function. The pown
and powr
variants have been introduced due to conflicting usage of the power functions and the different points of view (as stated above). [27]
The C and C++ standards do not specify the result of 00 (a domain error may occur). But for C, as of C99, if the normative annex F is supported, the result for real floating-point types is required to be 1 because there are significant applications for which this value is more useful than NaN [28] (for instance, with discrete exponents); the result on complex types is not specified, even if the informative annex G is supported. The Java standard, [29] the .NET Framework method System.Math.Pow
, [30] Julia, and Python [31] [32] also treat 00 as 1. Some languages document that their exponentiation operation corresponds to the pow
function from the C mathematical library; this is the case with Lua's ^
operator [33] and Perl's **
operator [34] (where it is explicitly mentioned that the result of 0**0
is platform-dependent).
R, [35] SageMath, [36] and PARI/GP [37] evaluate x0 to 1. Mathematica [38] simplifies x0 to 1 even if no constraints are placed on x; however, if 00 is entered directly, it is treated as an error or indeterminate. Mathematica [38] and PARI/GP [37] [39] further distinguish between integer and floating-point values: If the exponent is a zero of integer type, they return a 1 of the type of the base; exponentiation with a floating-point exponent of value zero is treated as undefined, indeterminate or error.
The number e is a mathematical constant approximately equal to 2.71828 that is the base of the natural logarithm and exponential function. It is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can invite confusion with Euler numbers, or with Euler's constant, a different constant typically denoted . Alternatively, e can be called Napier's constant after John Napier. The Swiss mathematician Jacob Bernoulli discovered the constant while studying compound interest.
In mathematics, the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. The exponential of a variable is denoted or , with the two notations used interchangeably. It is called exponential because its argument can be seen as an exponent to which a constant number e ≈ 2.718, the base, is raised. There are several other definitions of the exponential function, which are all equivalent although being of very different nature.
In mathematics, the gamma function is the most common extension of the factorial function to complex numbers. Derived by Daniel Bernoulli, the gamma function is defined for all complex numbers except non-positive integers, and for every positive integer , The gamma function can be defined via a convergent improper integral for complex numbers with positive real part:
The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718281828459. The natural logarithm of x is generally written as ln x, logex, or sometimes, if the base e is implicit, simply log x. Parentheses are sometimes added for clarity, giving ln(x), loge(x), or log(x). This is done particularly when the argument to the logarithm is not a single symbol, so as to prevent ambiguity.
In mathematics, a polynomial is a mathematical expression consisting of indeterminates and coefficients, that involves only the operations of addition, subtraction, multiplication and exponentiation to nonnegative integer powers, and has a finite number of terms. An example of a polynomial of a single indeterminate x is x2 − 4x + 7. An example with three indeterminates is x3 + 2xyz2 − yz + 1.
In mathematics, the prime number theorem (PNT) describes the asymptotic distribution of the prime numbers among the positive integers. It formalizes the intuitive idea that primes become less common as they become larger by precisely quantifying the rate at which this occurs. The theorem was proved independently by Jacques Hadamard and Charles Jean de la Vallée Poussin in 1896 using ideas introduced by Bernhard Riemann.
In mathematics, a transcendental number is a real or complex number that is not algebraic: that is, not the root of a non-zero polynomial with integer coefficients. The best-known transcendental numbers are π and e. The quality of a number being transcendental is called transcendence.
In computing, NaN, standing for Not a Number, is a particular value of a numeric data type which is undefined as a number, such as the result of 0/0. Systematic use of NaNs was introduced by the IEEE 754 floating-point standard in 1985, along with the representation of other non-finite quantities such as infinities.
In mathematics, a singularity is a point at which a given mathematical object is not defined, or a point where the mathematical object ceases to be well-behaved in some particular way, such as by lacking differentiability or analyticity.
In mathematics, exponentiation is an operation involving two numbers: the base and the exponent or power. Exponentiation is written as bn, where b is the base and n is the power; often said as "b to the power n". When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, bn is the product of multiplying n bases: In particular, .
Euler's constant is a mathematical constant, usually denoted by the lowercase Greek letter gamma, defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by log:
In mathematics, division by zero, division where the divisor (denominator) is zero, is a unique and problematic special case. Using fraction notation, the general example can be written as , where is the dividend (numerator).
In mathematics, a transcendental function is an analytic function that does not satisfy a polynomial equation whose coefficients are functions of the independent variable that can be written using only the basic operations of addition, subtraction, multiplication, and division. This is in contrast to an algebraic function.
Transcendental number theory is a branch of number theory that investigates transcendental numbers, in both qualitative and quantitative ways.
In mathematics, a homogeneous polynomial, sometimes called quantic in older texts, is a polynomial whose nonzero terms all have the same degree. For example, is a homogeneous polynomial of degree 5, in two variables; the sum of the exponents in each term is always 5. The polynomial is not homogeneous, because the sum of exponents does not match from term to term. The function defined by a homogeneous polynomial is always a homogeneous function.
In mathematics, the Gaussian or ordinary hypergeometric function2F1(a,b;c;z) is a special function represented by the hypergeometric series, that includes many other special functions as specific or limiting cases. It is a solution of a second-order linear ordinary differential equation (ODE). Every second-order linear ODE with three regular singular points can be transformed into this equation.
In mathematics, Puiseux series are a generalization of power series that allow for negative and fractional exponents of the indeterminate. For example, the series
In mathematics, the degree of a polynomial is the highest of the degrees of the polynomial's monomials with non-zero coefficients. The degree of a term is the sum of the exponents of the variables that appear in it, and thus is a non-negative integer. For a univariate polynomial, the degree of the polynomial is simply the highest exponent occurring in the polynomial. The term order has been used as a synonym of degree but, nowadays, may refer to several other concepts.
Most of the terms listed in Wikipedia glossaries are already defined and explained within Wikipedia itself. However, glossaries like this one are useful for looking up, comparing and reviewing large numbers of terms together. You can help enhance this page by adding new terms or writing definitions for existing ones.
L'unique monôme de degré 0 est l'élément unité de A[(Xi)i∈I]; on l'identifie souvent à l'élément unité 1 de A
Some textbooks leave the quantity 00 undefined, because the functions x0 and 0x have different limiting values when x decreases to 0. But this is a mistake. We must define x0 = 1, for all x, if the binomial theorem is to be valid when x = 0, y = 0, and/or x = −y. The binomial theorem is too important to be arbitrarily restricted! By contrast, the function 0x is quite unimportant.
In general the limit of φ(x)/ψ(x) when x = a in case the limits of both the functions exist is equal to the limit of the numerator divided by the denominator. But what happens when both limits are zero? The division (0/0) then becomes meaningless. A case like this is known as an indeterminate form. Other such forms are ∞/∞, 0 × ∞, ∞ − ∞, 00, 1∞ and ∞0.
Since log(0) does not exist, 0z is undefined. For Re(z) > 0, we define it arbitrarily as 0.
For z = 0, w ≠ 0, we define 0w = 0, while 00 is not defined.
... Let's start at x = 0. Here xx is undefined.
Python defines pow(0, 0) and 0 ** 0 to be 1, as is common for programming languages.
Exceptional cases follow Annex 'F' of the C99 standard as far as possible. In particular, pow(1.0, x) and pow(x, 0.0) always return 1.0, even when x is a zero or a NaN.
1 ^ y
andy ^ 0
are 1, always.
For consistency with Python and MPFR, 0^0 is defined to be 1 in Sage.
There is also the exponentiation operator ^, when the exponent is of type integer; otherwise, it is considered as a transcendental function. ... If the exponent n is an integer, then exact operations are performed using binary (left-shift) powering techniques. ... If the exponent n is not an integer, powering is treated as the transcendental function exp(n log x).