Undefined (mathematics)

Last updated

In mathematics, the term undefined is often used to refer to an expression which is not assigned an interpretation or a value (such as an indeterminate form, which has the possibility of assuming different values). [1] The term can take on several different meanings depending on the context. For example:

Contents

Undefined terms

In ancient times, geometers attempted to define every term. For example, Euclid defined a point as "that which has no part". In modern times, mathematicians recognize that attempting to define every word inevitably leads to circular definitions, and therefore leave some terms (such as "point") undefined (see primitive notion for more).

This more abstract approach allows for fruitful generalizations. In topology, a topological space may be defined as a set of points endowed with certain properties, but in the general setting, the nature of these "points" is left entirely undefined. Likewise, in category theory, a category consists of "objects" and "arrows", which are again primitive, undefined terms. This allows such abstract mathematical theories to be applied to very diverse concrete situations.

In arithmetic

The expression is undefined in arithmetic, as explained in division by zero (the expression is used in calculus to represent an indeterminate form).

Mathematicians have different opinions as to whether 00 should be defined to equal 1, or be left undefined.

Values for which functions are undefined

The set of numbers for which a function is defined is called the domain of the function. If a number is not in the domain of a function, the function is said to be "undefined" for that number. Two common examples are , which is undefined for , and , which is undefined (in the real number system) for negative .

In trigonometry

In trigonometry, for all , the functions and are undefined for all , while the functions and are undefined for all .

In complex analysis

In complex analysis, a point where a holomorphic function is undefined is called a singularity. One distinguishes between removable singularities (i.e., the function can be extended holomorphically to ), poles (i.e., the function can be extended meromorphically to ), and essential singularities (i.e., no meromorphic extension to can exist).

In computability theory

Notation using ↓ and ↑

In computability theory, if is a partial function on and is an element of , then this is written as , and is read as "f(a) is defined." [3]

If is not in the domain of , then this is written as , and is read as " is undefined".

It is important to distinguish "logic of existence"(the standard one) and "logic of definiteness". Both arrows are not well-defined as predicates in logic of existence, which normally uses the semantics of total functions. Term f(x) is a term and it has some value for example , but in the same time can be a legitimate value of a function. Therefore the predicate "defined" doesn't respect equality, therefore it is not well-defined.

The logic of definiteness has different predicate calculus, for example specialization of a formula with universal quantifier requires the term to be well-defined. Moreover, it requires introduction of a quasi-equality notion, which makes necessary the reformulation of the axioms. [4]

The symbols of infinity

In analysis, measure theory and other mathematical disciplines, the symbol is frequently used to denote an infinite pseudo-number, along with its negative, . The symbol has no well-defined meaning by itself, but an expression like is shorthand for a divergent sequence, which at some point is eventually larger than any given real number.

Performing standard arithmetic operations with the symbols is undefined. Some extensions, though, define the following conventions of addition and multiplication:

No sensible extension of addition and multiplication with exists in the following cases:

For more detail, see extended real number line.

Related Research Articles

<span class="mw-page-title-main">Euler's formula</span> Complex exponential in terms of sine and cosine

Euler's formula, named after Leonhard Euler, is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. Euler's formula states that, for any real number x, one has where e is the base of the natural logarithm, i is the imaginary unit, and cos and sin are the trigonometric functions cosine and sine respectively. This complex exponential function is sometimes denoted cis x. The formula is still valid if x is a complex number, and is also called Euler's formula in this more general case.

<span class="mw-page-title-main">Exponential function</span> Mathematical function, denoted exp(x) or e^x

The exponential function is a mathematical function denoted by or . Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, although it can be extended to the complex numbers or generalized to other mathematical objects like matrices or Lie algebras. The exponential function originated from the operation of taking powers of a number, but various modern definitions allow it to be rigorously extended to all real arguments , including irrational numbers. Its ubiquitous occurrence in pure and applied mathematics led mathematician Walter Rudin to consider the exponential function to be "the most important function in mathematics".

<span class="mw-page-title-main">Trigonometric functions</span> Functions of an angle

In mathematics, the trigonometric functions are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others. They are among the simplest periodic functions, and as such are also widely used for studying periodic phenomena through Fourier analysis.

<span class="mw-page-title-main">Extended real number line</span> Real numbers with +∞ and −∞ added

In mathematics, the extended real number system is obtained from the real number system by adding two infinity elements: and where the infinities are treated as actual numbers. It is useful in describing the algebra on infinities and the various limiting behaviors in calculus and mathematical analysis, especially in the theory of measure and integration. The extended real number system is denoted or or It is the Dedekind–MacNeille completion of the real numbers.

A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula. As formulas are entirely constituted with symbols of various types, many symbols are needed for expressing all mathematics.

In complex analysis, a branch of mathematics, analytic continuation is a technique to extend the domain of definition of a given analytic function. Analytic continuation often succeeds in defining further values of a function, for example in a new region where the infinite series representation which initially defined the function becomes divergent.

<span class="mw-page-title-main">Exponentiation</span> Arithmetic operation

In mathematics, exponentiation is an operation involving two numbers: the base and the exponent or power. Exponentiation is written as bn, where b is the base and n is the power; this is pronounced as "b (raised) to the n". When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, bn is the product of multiplying n bases:

<span class="mw-page-title-main">Division by zero</span> Class of mathematical expression

In mathematics, division by zero, division where the divisor (denominator) is zero, is a unique and problematic special case. Using fraction notation, the general example can be written as , where is the dividend (numerator).

In mathematical analysis, Hölder's inequality, named after Otto Hölder, is a fundamental inequality between integrals and an indispensable tool for the study of Lp spaces.

<span class="mw-page-title-main">Spherical harmonics</span> Special mathematical functions defined on the surface of a sphere

In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields. The table of spherical harmonics contains a list of common spherical harmonics.

In mathematics, a Gaussian function, often simply referred to as a Gaussian, is a function of the base form

<span class="mw-page-title-main">Inverse trigonometric functions</span> Inverse functions of sin, cos, tan, etc.

In mathematics, the inverse trigonometric functions are the inverse functions of the trigonometric functions. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.

In mathematics, the Mellin transform is an integral transform that may be regarded as the multiplicative version of the two-sided Laplace transform. This integral transform is closely connected to the theory of Dirichlet series, and is often used in number theory, mathematical statistics, and the theory of asymptotic expansions; it is closely related to the Laplace transform and the Fourier transform, and the theory of the gamma function and allied special functions.

<span class="mw-page-title-main">Theta function</span> Special functions of several complex variables

In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. As Grassmann algebras, they appear in quantum field theory.

In mathematics, the Helmholtz equation is the eigenvalue problem for the Laplace operator. It corresponds to the linear partial differential equation:

In mathematics, and specifically in potential theory, the Poisson kernel is an integral kernel, used for solving the two-dimensional Laplace equation, given Dirichlet boundary conditions on the unit disk. The kernel can be understood as the derivative of the Green's function for the Laplace equation. It is named for Siméon Poisson.

In mathematics, a π-system on a set is a collection of certain subsets of such that

<span class="mw-page-title-main">Complex logarithm</span> Logarithm of a complex number

In mathematics, a complex logarithm is a generalization of the natural logarithm to nonzero complex numbers. The term refers to one of the following, which are strongly related:

In mathematical logic, a term denotes a mathematical object while a formula denotes a mathematical fact. In particular, terms appear as components of a formula. This is analogous to natural language, where a noun phrase refers to an object and a whole sentence refers to a fact.

In mathematics, a limit is the value that a function approaches as the input approaches some value. Limits are essential to calculus and mathematical analysis, and are used to define continuity, derivatives, and integrals.

References

  1. Weisstein, Eric W. "Undefined". mathworld.wolfram.com. Retrieved 2019-12-15.
  2. Bogomolny, Alexander. "Undefined vs Indeterminate in Mathematics". Cut-the-Knot. Retrieved 2019-12-15.
  3. Enderton, Herbert B. (2011). Computability: An Introduction to Recursion Theory. Elseveier. pp. 3–6. ISBN   978-0-12-384958-8.
  4. Farmer, William M.; Guttman, Joshua D. (October 2000). "A Set Theory with Support for Partial Functions" (PDF). Studia Logica . 66 (1, Partiality and Modality): 59–78.

Further reading