Blackboard bold

Last updated
Blackboard bold used on a blackboard Blackboard bold on a blackboard.jpg
Blackboard bold used on a blackboard

Blackboard bold is a style of writing bold symbols on a blackboard by doubling certain strokes, commonly used in mathematical lectures, and the derived style of typeface used in printed mathematical texts. The style is most commonly used to represent the number sets (natural numbers), (integers), (rational numbers), (real numbers), and (complex numbers).

Contents

To imitate a bold typeface on a typewriter, a character can be typed over itself (called double-striking); [1] symbols thus produced are called double-struck, and this name is sometimes adopted for blackboard bold symbols, [2] for instance in Unicode glyph names.

In typography, a typeface with characters that are not solid is called inline, handtooled, or open face. [3]

History

Typewritten lecture notes by Gunning (1966), showing "blackboard bold" style R and C achieved by double-striking each letter with significant offset. Blackboard bold in typewritten notes from Gunning (1966).jpg
Typewritten lecture notes by Gunning (1966), showing "blackboard bold" style R and C achieved by double-striking each letter with significant offset.
Typewritten lecture notes by Narasimhan (1966), with "blackboard bold" style R and C achieved with an inline typewriter face. Blackboard bold in typewritten notes from Narasimhan (1966).png
Typewritten lecture notes by Narasimhan (1966), with "blackboard bold" style R and C achieved with an inline typewriter face.

Traditionally, various symbols were indicated by boldface in print but on blackboards and in manuscripts "by wavy underscoring, or enclosure in a circle, or even by wavy overscoring". [6]

Most typewriters have no dedicated bold characters at all. To produce a bold effect on a typewriter, a character can be double-struck with or without a small offset. By the mid 1960s, typewriter accessories such as the "Doublebold" could automatically double-strike every character while engaged. [7] While this method makes a character bolder, and can effectively emphasize words or passages, in isolation a double-struck character is not always clearly different from its single-struck counterpart. [8] [9]

Blackboard bold originated from the attempt to write bold symbols on typewriters and blackboards that were legible but distinct, perhaps starting in the late 1950s in France, and then taking hold at the Princeton University mathematics department in the early 1960s. [8] [10] Mathematical authors began typing faux-bold letters by double-striking them with a significant offset or over-striking them with the letter I, creating new symbols such as IR, IN, CC, or ZZ; at the blackboard, lecturers began writing bold symbols with certain doubled strokes. [8] [10] The notation caught on: blackboard bold spread from classroom to classroom and is now used around the world. [8]

A page from Loomis & Sternberg (1968), showing an early example of "blackboard bold" style R and C in a printed book. Blackboard bold in print in Loomis and Sternberg (1968).jpg
A page from Loomis & Sternberg (1968), showing an early example of "blackboard bold" style R and C in a printed book.

The style made its way into print starting in the mid 1960s. Early examples include Robert Gunning and Hugo Rossi's Analytic Functions of Several Complex Variables (1965) [12] [10] and Lynn Loomis and Shlomo Sternberg's Advanced Calculus (1968). [11] Initial adoption was sporadic, however, and most publishers continued using boldface. In 1979, Wiley recommended its authors avoid "double-backed shadow or outline letters, sometimes called blackboard bold", because they could not always be printed; [13] in 1982, Wiley refused to include blackboard bold characters in mathematical books because the type was difficult and expensive to obtain. [14]

Donald Knuth preferred boldface to blackboard bold and so did not include blackboard bold in the Computer Modern typeface that he created for the TeX mathematical typesetting system he first released in 1978. [14] When Knuth's 1984 The TeXbook needed an example of blackboard bold for the index, he produced using the letters I and R with a negative space between; [15] in 1988 Robert Messer extended this to a full set of "poor person's blackboard bold" macros, overtyping each capital letter with carefully placed I characters or vertical lines. [16]

Not all mathematical authors were satisfied with such workarounds. The American Mathematical Society created a simple chalk-style blackboard bold typeface in 1985 to go with the AMS-TeX package created by Michael Spivak, accessed using the \Bbb command (for "blackboard bold"); in 1990, the AMS released an update with a new inline-style blackboard bold font intended to better match Times. [17] Since then, a variety of other blackboard bold typefaces have been created, some following the style of traditional inline typefaces and others closer in form to letters drawn with chalk. [18]

Unicode included the most common blackboard bold letters among the "Letterlike Symbols" in version 1.0 (1991), inherited from the Xerox Character Code Standard. Later versions of Unicode extended this set to all uppercase and lowercase Latin letters and a variety of other symbols, among the "Mathematical Alphanumeric Symbols". [19]

In professionally typeset books, publishers and authors have gradually adopted blackboard bold, and its use is now commonplace, [14] but some still use ordinary bold symbols. Some authors use blackboard bold letters on the blackboard or in manuscripts, but prefer an ordinary bold typeface in print; for example, Jean-Pierre Serre has used blackboard bold in lectures, but has consistently used ordinary bold for the same symbols in his published works. [20] The Chicago Manual of Style 's recommendation has evolved over time: In 1993, for the 14th edition, it advised that "blackboard bold should be confined to the classroom" (13.14); In 2003, for the 15th edition, it stated that "open-faced (blackboard) symbols are reserved for familiar systems of numbers" (14.12). The international standard ISO 80000-2:2019 lists R as the symbol for the real numbers but notes "the symbols IR and are also used", and similarly for N, Z, Q, C, and P (prime numbers). [21]

Encoding

Blackboard bold variants, from top to bottom: "poor person's blackboard bold", AMSFonts mathbb based on Times, doublestroke package based on Computer Modern, STIX Two inspired by Monotype Special Alphabets 4 Blackboard bold number sets.svg
Blackboard bold variants, from top to bottom: "poor person's blackboard bold", AMSFonts mathbb based on Times, doublestroke package based on Computer Modern, STIX Two inspired by Monotype Special Alphabets 4

TeX, the standard typesetting system for mathematical texts, does not contain direct support for blackboard bold symbols, but the American Mathematical Society distributes the AMSFonts collection, loaded from the amssymb package, which includes a blackboard bold typeface for uppercase Latin letters accessed using \mathbb (e.g. \mathbb{R} produces ). [23]

In Unicode, a few of the more common blackboard bold characters (ℂ, ℍ, ℕ, ℙ, ℚ, ℝ, and ℤ) are encoded in the Basic Multilingual Plane (BMP) in the Letterlike Symbols (2100–214F) area, named DOUBLE-STRUCK CAPITAL C etc. The rest, however, are encoded outside the BMP, in Mathematical Alphanumeric Symbols (1D400–1D7FF), specifically from 1D538–1D550 (uppercase, excluding those encoded in the BMP), 1D552–1D56B (lowercase) and 1D7D8–1D7E1 (digits). Blackboard bold Arabic letters are encoded in Arabic Mathematical Alphabetic Symbols (1EE00–1EEFF), specifically 1EEA1–1EEBB.

Usage

The following table shows all available Unicode blackboard bold characters. [24]

The first column shows the letter as typically rendered by the LaTeX markup system. The second column shows the Unicode code point. The third column shows the Unicode symbol itself (which will only display correctly on browsers that support Unicode and have access to a suitable typeface). The fourth column describes some typical usage in mathematical texts. [25] Some of the symbols (particularly and ) are nearly universal in their interpretation, [14] while others are more varied in use.

LaTeXUnicode code point (hex)Unicode symbolMathematics usage
U+1D538𝔸Represents affine space, , or the ring of adeles. Occasionally represents the algebraic numbers, [26] the algebraic closure of (more commonly written or Q ), or the algebraic integers, an important subring of the algebraic numbers.
U+1D539𝔹Sometimes represents a ball, a boolean domain, or the Brauer group of a field.
U+2102Represents the set of complex numbers. [14]
U+1D53B𝔻Represents the unit disk in the complex plane, for example as the conformal disk model of the hyperbolic plane. By generalisation may mean the n-dimensional ball. Occasionally may mean the decimal fractions (see number), split-complex numbers, or domain of discourse.
U+1D53C𝔼Represents the expected value of a random variable, or Euclidean space, or a field in a tower of fields, or the Eudoxus reals.
U+1D53D𝔽Represents a field. [26] Often used for finite fields, with a subscript to indicate the order. [26] Also represents a Hirzebruch surface or a free group, with a subscript to indicate the number of generators (or generating set, if infinite).
U+1D53E𝔾Represents a Grassmannian or a group, especially an algebraic group.
U+210DRepresents the quaternions (the H stands for Hamilton), [26] or the upper half-plane, or hyperbolic space, [26] or hyperhomology of a complex.
U+1D540𝕀The closed unit interval or the ideal of polynomials vanishing on a subset. Occasionally the identity mapping on an algebraic structure, or an indicator function. The set of imaginary numbers (i.e., the set of all real multiples of the imaginary unit).
U+1D541𝕁Sometimes represents the irrational numbers, .
U+1D542𝕂Represents a field. [26] This is derived from the German word Körper, which is German for field (literally, 'body'; in French the term is corps). May also be used to denote a compact space.
U+1D543𝕃Represents the Lefschetz motive. See Motive (algebraic geometry).
U+1D544𝕄Sometimes represents the monster group. The set of all m-by-n matrices is sometimes denoted . In geometric algebra, represents the motor group of rigid motions. In functional programming and formal semantics, denotes the type constructor for a monad.
U+2115Represents the set of natural numbers. [21] May or may not include zero.
U+1D546𝕆Represents the octonions. [26]
U+2119Represents projective space, the probability of an event, [26] the prime numbers, [21] a power set, the positive reals, the irrational numbers, or a forcing poset.
U+211ARepresents the set of rational numbers. [14] (The Q stands for quotient.)
U+211DRepresents the set of real numbers. [14]
U+1D54A𝕊Represents a sphere, or the sphere spectrum, or occasionally the sedenions.
U+1D54B𝕋Represents the circle group, particularly the unit circle in the complex plane (and the n-dimensional torus), occasionally the trigintaduonions, or a Hecke algebra (Hecke denoted his operators as Tn or ), or the tropical semiring, or twistor space.
U+1D54C𝕌
U+1D54D𝕍Represents a vector space or an affine variety generated by a set of polynomials, or in probability theory and statistics the variance.
U+1D54E𝕎Represents the whole numbers (here in the sense of non-negative integers), which also are represented by .
U+1D54F𝕏Occasionally used to denote an arbitrary metric space.
U+1D550𝕐
U+2124Represents the set of integers. [14] (The Z is for Zahlen, German for 'numbers', and zählen, German for 'to count'.) When it has a positive integer subscript, it can mean the finite cyclic group of that size.
U+1D552𝕒
U+1D553𝕓
U+1D554𝕔
U+1D555𝕕
U+1D556𝕖
U+1D557𝕗
U+1D558𝕘
U+1D559𝕙
U+1D55A𝕚
U+1D55B𝕛
U+1D55C𝕜Represents a field.
U+1D55D𝕝
U+1D55E𝕞
U+1D55F𝕟
U+1D560𝕠
U+1D561𝕡
U+1D562𝕢
U+1D563𝕣
U+1D564𝕤
U+1D565𝕥
U+1D566𝕦
U+1D567𝕧
U+1D568𝕨
U+1D569𝕩
U+1D56A𝕪
U+1D56B𝕫
U+2145
U+2146
U+2147
U+2148
U+2149
U+213E
U+213D
U+213F
U+213C
U+2140
U+1D7D8𝟘In algebra of logical propositions, it represents a contradiction or falsity.
U+1D7D9𝟙In set theory, the top element of a forcing poset, or occasionally the identity matrix in a matrix ring. Also used for the indicator function and the unit step function, and for the identity operator or identity matrix. In geometric algebra, represents the unit antiscalar, the identity element under the geometric antiproduct. In algebra of logical propositions, it represents a tautology.
U+1D7DA𝟚In category theory, the interval category.
U+1D7DB𝟛
U+1D7DC𝟜
U+1D7DD𝟝
U+1D7DE𝟞
U+1D7DF𝟟
U+1D7E0𝟠
U+1D7E1𝟡
U+1EEA1𞺡Arabic Mathematical Double-Struck Beh (based on ب)
U+1EEA2𞺢
U+1EEA3𞺣
U+1EEA5𞺥
U+1EEA6𞺦
U+1EEA7𞺧
U+1EEA8𞺨
U+1EEA9𞺩
U+1EEAB𞺫
U+1EEAC𞺬
U+1EEAD𞺭
U+1EEAE𞺮
U+1EEAF𞺯
U+1EEB0𞺰
U+1EEB1𞺱
U+1EEB2𞺲
U+1EEB3𞺳
U+1EEB4𞺴
U+1EEB5𞺵
U+1EEB6𞺶
U+1EEB7𞺷
U+1EEB8𞺸
U+1EEB9𞺹
U+1EEBA𞺺
U+1EEBB𞺻

In addition, a blackboard-bold μ n (not found in Unicode or amsmath LaTeX) is sometimes used by number theorists and algebraic geometers to designate the group scheme of n-th roots of unity. [27]

Note: Only uppercase Roman letters are given LaTeX renderings because Wikipedia's implementation uses the AMSFonts blackboard bold typeface, which does not support other characters.

See also

Related Research Articles

Epsilon is the fifth letter of the Greek alphabet, corresponding phonetically to a mid front unrounded vowel IPA:[e̞] or IPA:[ɛ̝]. In the system of Greek numerals it also has the value five. It was derived from the Phoenician letter He . Letters that arose from epsilon include the Roman E, Ë and Ɛ, and Cyrillic Е, È, Ё, Є and Э. The name of the letter was originally εἶ, but it was later changed to ἒ ψιλόν in the Middle Ages to distinguish the letter from the digraph αι, a former diphthong that had come to be pronounced the same as epsilon.

Metafont is a description language used to define raster fonts. It is also the name of the interpreter that executes Metafont code, generating the bitmap fonts that can be embedded into e.g. PostScript. Metafont was devised by Donald Knuth as a companion to his TeX typesetting system.

<span class="mw-page-title-main">Typeface</span> Set of characters that share common design features

A typeface is a design of letters, numbers and other symbols, to be used in printing or for electronic display. Most typefaces include variations in size, weight, slope, width, and so on. Each of these variations of the typeface is a font.

A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula. As formulas are entirely constituted with symbols of various types, many symbols are needed for expressing all mathematics.

<span class="mw-page-title-main">Phi</span> Twenty-first letter in the Greek alphabet

Phi is the twenty-first letter of the Greek alphabet.

Pi is the sixteenth letter of the Greek alphabet, meaning units united, and representing the voiceless bilabial plosive IPA:[p]. In the system of Greek numerals it has a value of 80. It was derived from the Phoenician letter Pe. Letters that arose from pi include Latin P, Cyrillic Pe, Coptic pi, and Gothic pairthra (𐍀).

Nu is the thirteenth letter of the Greek alphabet, representing the voiced alveolar nasal IPA:[n]. In the system of Greek numerals it has a value of 50. It is derived from the Phoenician nun . Its Latin equivalent is N, though the lowercase resembles the Roman lowercase v.

<span class="mw-page-title-main">Fraktur</span> Typeface category

Fraktur is a calligraphic hand of the Latin alphabet and any of several blackletter typefaces derived from this hand. It is designed such that the beginnings and ends of the individual strokes that make up each letter will be clearly visible, and often emphasized; in this way it is often contrasted with the curves of the Antiqua (common) typefaces where the letters are designed to flow and strokes connect together in a continuous fashion. The word "Fraktur" derives from Latin frāctūra, built from frāctus, passive participle of frangere, which is also the root for the English word "fracture". In non-professional contexts, the term "Fraktur" is sometimes misused to refer to all blackletter typefaces – while Fraktur typefaces do fall under that category, not all blackletter typefaces exhibit the Fraktur characteristics described above.

<span class="mw-page-title-main">Italic type</span> Font style with cursive typeface and slanted design

In typography, italic type is a cursive font based on a stylised form of calligraphic handwriting. Along with blackletter and roman type, it served as one of the major typefaces in the history of Western typography.

Mathematical notation consists of using symbols for representing operations, unspecified numbers, relations, and any other mathematical objects and assembling them into expressions and formulas. Mathematical notation is widely used in mathematics, science, and engineering for representing complex concepts and properties in a concise, unambiguous, and accurate way.

Sigma is the eighteenth letter of the Greek alphabet. In the system of Greek numerals, it has a value of 200. In general mathematics, uppercase Σ is used as an operator for summation. When used at the end of a letter-case word, the final form (ς) is used. In Ὀδυσσεύς (Odysseus), for example, the two lowercase sigmas (σ) in the center of the name are distinct from the word-final sigma (ς) at the end. The Latin letter S derives from sigma while the Cyrillic letter Es derives from a lunate form of this letter.

Rho is the seventeenth letter of the Greek alphabet. In the system of Greek numerals it has a value of 100. It is derived from Phoenician letter res . Its uppercase form uses the same glyph, Ρ, as the distinct Latin letter P; the two letters have different Unicode encodings.

<span class="mw-page-title-main">Computer Modern</span> Family of serif typefaces

Computer Modern is the original family of typefaces used by the typesetting program TeX. It was created by Donald Knuth with his Metafont program, and was most recently updated in 1992. Computer Modern, or variants of it, remains very widely used in scientific publishing, especially in disciplines that make frequent use of mathematical notation.

Mathematical Alphanumeric Symbols is a Unicode block comprising styled forms of Latin and Greek letters and decimal digits that enable mathematicians to denote different notions with different letter styles. The letters in various fonts often have specific, fixed meanings in particular areas of mathematics. By providing uniformity over numerous mathematical articles and books, these conventions help to read mathematical formulas. These also may be used to differentiate between concepts that share a letter in a single problem.

<span class="mw-page-title-main">Lucida</span> Typeface family

Lucida is an extended family of related typefaces designed by Charles Bigelow and Kris Holmes and released from 1984 onwards. The family is intended to be extremely legible when printed at small size or displayed on a low-resolution display – hence the name, from 'lucid'.

<span class="mw-page-title-main">L</span> 12th letter of the Latin alphabet

L, or l, is the twelfth letter of the Latin alphabet, used in the modern English alphabet, the alphabets of other western European languages and others worldwide. Its name in English is el, plural els.

<span class="mw-page-title-main">GNU FreeFont</span> Font family

GNU FreeFont is a family of free OpenType, TrueType and WOFF vector fonts, implementing as much of the Universal Character Set (UCS) as possible, aside from the very large CJK Asian character set. The project was initiated in 2002 by Primož Peterlin and is now maintained by Steve White.

A numeral is a character that denotes a number. The decimal number digits 0–9 are used widely in various writing systems throughout the world, however the graphemes representing the decimal digits differ widely. Therefore Unicode includes 22 different sets of graphemes for the decimal digits, and also various decimal points, thousands separators, negative signs, etc. Unicode also includes several non-decimal numerals such as Aegean numerals, Roman numerals, counting rod numerals, Mayan numerals, Cuneiform numerals and ancient Greek numerals. There is also a large number of typographical variations of the Western Arabic numerals provided for specialized mathematical use and for compatibility with earlier character sets, such as ² or ②, and composite characters such as ½.

Double strike or double struck may refer to:

References

  1. Gilreath, Charles T. (1993). "Graphic cueing of text: The typographic and diagraphic dimensions". Visible Language. 27 (3): 336–361.
  2. Rosendorf, Theodore (2009). The Typographic Desk Reference . Oak Knoll Press. pp. 89–90.
  3. Bringhurst, Robert (1992). "Glossary of Typographic Terms" . Elements of Typographic Style. Hartley & Marks. p. 234. ISBN   0-88179-033-8. Inline: A letter in which the inner portions of the main strokes have been carved away, leaving the edges more or less intact. Inline faces lighten the color while preserving the shapes and proportions of the original face.
    Hutchings, R.S. (1965). "Inlines and Outlines" . A Manual of Decorated Typefaces. Hastings House. pp. 10–11.
    Consuegra, David (2004). American Type: Design & Designers . Allworth Press. "Handtooled typefaces", p. 280; "Inline typefaces", p. 282; "Open face typefaces", p. 286–287.
  4. Gunning, Robert C. (1966). Lectures on Riemann Surfaces. Mathematical Notes. Princeton University Press. p. 1.
  5. Narasimhan, Raghavan (1966). Introduction to the Theory of Analytic Spaces. Lecture Notes in Mathematics. Vol. 25. Springer. p. 9. doi:10.1007/bfb0077071. ISBN   978-3-540-03608-1.
  6. Hodgman, Charles D.; Selby, Samuel M.; Weast, Robert C., eds. (1959). C.R.C. Standard Mathematical Tables (12th ed.). Chemical Rubber Publishing Company. p. 494.
    Chaundy, Theodore W.; Barrett, P.R.; Batey, Charles (1954). The Printing of Mathematics . Oxford University Press. p. 52. The sign for bold type is a wavy line beneath the words or symbols in question; for security the word 'bold' may be added in the margin.
  7. Karch, R. Randolph (1970). Graphic Arts Procedures. American Technical Society. p. 199.
  8. 1 2 3 4 Webb, Stephen (2018). "Set of Natural Numbers ℕ" . Clash Of Symbols: A Ride Through The Riches Of Glyphs. Springer. pp. 198–199, 233.
  9. An example of double-struck type produced by an impact printer of the early 1980s can be found in:
    Waite, Mitchell; Arca, Julie (1982). Word Processing Primer . BYTE/McGraw-Hill. pp. 76–77.
  10. 1 2 3 Rudolph, Lee (2003-10-06). "Re: History of blackboard bold?". Newsgroup:  compt.text.tex. Archived from the original on 2021-09-23. Retrieved 2023-07-25.
    This usenet post (as mirrored by The Math Forum) seems to have been one of the sources for Webb 2018; see p. 233
  11. 1 2 Loomis, Lynn Harold; Sternberg, Shlomo (1968). Advanced Calculus. Addison Wesley. p. 241. The later revised edition is available from Sternberg's website.
  12. Gunning, Robert C.; Rossi, Hugo (1965). Analytic functions of several complex variables. Prentice-Hall.
  13. A guide for Wiley-Interscience and Ronald Press Authors in the Preparation and Production of Manuscript and Illustrations (2nd ed.). John Wiley & Sons. 1979.
  14. 1 2 3 4 5 6 7 8 Krantz, S. (2001). "2.8 Technical Issues". Handbook of Typography for the Mathematical Sciences. Chapman & Hall/CRC. p. 35. ISBN   9781584881490.
  15. Knuth, Donald (1984). The TeXbook . Addison-Wesley. p. 460.
  16. Messer, Robert (1988). "Blackboard Bold" (PDF). TUGboat. 9 (1): 19–20.
  17. Beeton, Barbara (1985). "Mathematical Symbols and Cyrillic Fonts Ready for Distribution" (PDF). TUGboat. 6 (2): 59–63.
    Spivak, Michael (1986). The Joy of TeX: A Gourmet Guide to Typesetting with the AMS-TeX Macro Package . American Mathematical Society. p. 260.
    "Coming in January from the American Mathematical Society" (PDF). TUGboat. 10 (3): 365–366. 1989.
    Beeton, Barbara (2020-09-05). "Re: Who designed the mathematical blackboard bold letters of AMS, and when?". TeX–LaTeX Stack Exchange. Retrieved 2023-07-27. The [1985] blackboard bold letters [...] are blocky in appearance, somewhat similar to those in the Monotype blackboard bold, but of much lower quality. (It's no surprise that Knuth did not like them.)
  18. Vieth, Ulrik (2012). "OpenType math font development: Progress and challenges" (PDF). TUGboat. 33 (3): 302–308. Design choices of Blackboard Bold alphabets again fall into multiple groups. One group favors a serif design which is derived from the main serif font: [...] Another group favor a sans-serif design which may be unrelated to the main sans-serif font: [...] Finally, the designs of individual letters can vary significantly among different math fonts, and are an additional consideration in font choice. For example, some users may have fairly strong preferences regarding such details as to whether the stem or the diagonal of the letter 'N' is double-struck.
  19. Aliprand, Joan; Allen, Julie; et al., eds. (2003). "Math Alphanumeric Symbols: U+1D400–U+1D7FF" . The Unicode Standard, Version 4.0. Addison-Wesley. pp. 354–357.
  20. Example Serre lecture: "Writing Mathematics Badly" video talk (part 3/3), starting at 708
    Example Serre book: Serre, Jean-Pierre (1994). Cohomologie galoisienne. Springer.
  21. 1 2 3 "7. Standard number sets and intervals". ISO 80000-2 Quantities and Units: Mathematics (2nd ed.). International Organization for Standardization. August 2019. Table 3, No. 2-7.4.
  22. Kummer, Olaf (2006). "doublestroke – Typeset mathematical double stroke symbols". Comprehensive TeX Archive Network . Retrieved 2023-07-27.
  23. Pakin, Scott (25 June 2020). The Comprehensive LATEX Symbol List (PDF). Archived (PDF) from the original on 2022-10-09.
  24. Carlisle, David; Ion, Patrick (2023). "Double Struck (Open Face, Blackboard Bold)". XML Entity Definitions for Characters (Technical report) (3rd ed.). World Wide Web Consortium. Retrieved 2023-07-27. Note: Characters highlighted [in yellow] are in the Plane 0 [Basic Multilingual Plane], not in the Mathematical Alphanumeric Symbols block in Plane 1.
  25. Weisstein, Eric W. "Doublestruck". mathworld.wolfram.com. Retrieved 2022-12-21.
  26. 1 2 3 4 5 6 7 8 Sevryuk, Mikhail B. (1998-12-02). "Writing on a computer: some discouraging experiences". Arnold's Mathematical Seminar.
  27. Milne, James S. (1980). Étale cohomology. Princeton University Press. pp. xiii, 66.