Latin letters used in mathematics, science, and engineering

Last updated

Many letters of the Latin alphabet, both capital and small, are used in mathematics, science, and engineering to denote by convention specific or abstracted constants, variables of a certain type, units, multipliers, or physical entities. Certain letters, when combined with special formatting, take on special meaning.

Contents

Below is an alphabetical list of the letters of the alphabet with some of their uses. The field in which the convention applies is mathematics unless otherwise noted.

Typographical variation

Some common conventions:

Typographical variations of Latin letters in Unicode
NameSub-typeAlphabet
Double-struck Mathematical𝔸 𝔹 ℂ 𝔻 𝔼 𝔽 𝔾 ℍ 𝕀 𝕁 𝕂 𝕃 𝕄 ℕ 𝕆 ℙ ℚ ℝ 𝕊 𝕋 𝕌 𝕍 𝕎 𝕏 𝕐 ℤ
𝕒 𝕓 𝕔 𝕕 𝕖 𝕗 𝕘 𝕙 𝕚 𝕛 𝕜 𝕝 𝕞 𝕟 𝕠 𝕡 𝕢 𝕣 𝕤 𝕥 𝕦 𝕧 𝕨 𝕩 𝕪 𝕫
Italicⅆ ⅇ ⅈ ⅉ ⅅ
Script/CalligraphyMathematical𝒜 ℬ 𝒞 𝒟 ℰ ℱ 𝒢 ℋ ℐ 𝒥 𝒦 ℒ ℳ 𝒩 𝒪 𝒫 𝒬 ℛ 𝒮 𝒯 𝒰 𝒱 𝒲 𝒳 𝒴 𝒵
𝒶 𝒷 𝒸 𝒹 ℯ 𝒻 ℊ 𝒽 𝒾 𝒿 𝓀 𝓁 𝓂 𝓃 ℴ 𝓅 𝓆 𝓇 𝓈 𝓉 𝓊 𝓋 𝓌 𝓍 𝓎 𝓏
Mathematical Bold𝓐 𝓑 𝓒 𝓓 𝓔 𝓕 𝓖 𝓗 𝓘 𝓙 𝓚 𝓛 𝓜 𝓝 𝓞 𝓟 𝓠 𝓡 𝓢 𝓣 𝓤 𝓥 𝓦 𝓧 𝓨 𝓩
𝓪 𝓫 𝓬 𝓭 𝓮 𝓯 𝓰 𝓱 𝓲 𝓳 𝓴 𝓵 𝓶 𝓷 𝓸 𝓹 𝓺 𝓻 𝓼 𝓽 𝓾 𝓿 𝔀 𝔁 𝔂 𝔃
Fraktur Mathematical𝔄 𝔅 ℭ 𝔇 𝔈 𝔉 𝔊 ℌ ℑ 𝔍 𝔎 𝔏 𝔐 𝔑 𝔒 𝔓 𝔔 ℜ 𝔖 𝔗 𝔘 𝔙 𝔚 𝔛 𝔜 ℨ
𝔞 𝔟 𝔠 𝔡 𝔢 𝔣 𝔤 𝔥 𝔦 𝔧 𝔨 𝔩 𝔪 𝔫 𝔬 𝔭 𝔮 𝔯 𝔰 𝔱 𝔲 𝔳 𝔴 𝔵 𝔶 𝔷
Mathematical Bold𝕬 𝕭 𝕮 𝕯 𝕰 𝕱 𝕲 𝕳 𝕴 𝕵 𝕶 𝕷 𝕸 𝕹 𝕺 𝕻 𝕼 𝕽 𝕾 𝕿 𝖀 𝖁 𝖂 𝖃 𝖄 𝖅
𝖆 𝖇 𝖈 𝖉 𝖊 𝖋 𝖌 𝖍 𝖎 𝖏𝖐 𝖑 𝖒 𝖓 𝖔 𝖕 𝖖 𝖗 𝖘 𝖙 𝖚 𝖛 𝖜 𝖝 𝖞 𝖟
Mono-spaceMathematical𝙰 𝙱 𝙲 𝙳 𝙴 𝙵 𝙶 𝙷 𝙸 𝙹 𝙺 𝙻 𝙼 𝙽 𝙾 𝙿 𝚀 𝚁 𝚂 𝚃 𝚄 𝚅 𝚆 𝚇 𝚈 𝚉
𝚊 𝚋 𝚌 𝚍 𝚎 𝚏 𝚐 𝚑 𝚒 𝚓 𝚔 𝚕 𝚖 𝚗 𝚘 𝚙 𝚚 𝚛 𝚜 𝚝 𝚞 𝚟 𝚠 𝚡 𝚢 𝚣

Aa

Bb

Cc

Dd

Ee

Ff

Gg

Hh

Ii

Jj

Kk

Ll

Mm

Nn

Oo

Pp

Qq

Rr

Ss

Tt

Uu

Vv

Ww

Xx

Yy

Zz

See also

Related Research Articles

Bra–ket notation, also called Dirac notation, is a notation for linear algebra and linear operators on complex vector spaces together with their dual space both in the finite-dimensional and infinite-dimensional case. It is specifically designed to ease the types of calculations that frequently come up in quantum mechanics. Its use in quantum mechanics is quite widespread.

<span class="mw-page-title-main">Complex number</span> Number with a real and an imaginary part

In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted i, called the imaginary unit and satisfying the equation ; every complex number can be expressed in the form , where a and b are real numbers. Because no real number satisfies the above equation, i was called an imaginary number by René Descartes. For the complex number , a is called the real part, and b is called the imaginary part. The set of complex numbers is denoted by either of the symbols or C. Despite the historical nomenclature "imaginary", complex numbers are regarded in the mathematical sciences as just as "real" as the real numbers and are fundamental in many aspects of the scientific description of the natural world.

In engineering and science, dimensional analysis is the analysis of the relationships between different physical quantities by identifying their base quantities and units of measurement and tracking these dimensions as calculations or comparisons are performed. The term dimensional analysis is also used to refer to conversion of units from one dimensional unit to another, which can be used to evaluate scientific formulae.

<span class="mw-page-title-main">Linear algebra</span> Branch of mathematics

Linear algebra is the branch of mathematics concerning linear equations such as:

Buckingham <span class="texhtml mvar" style="font-style:italic;">π</span> theorem Theorem in dimensional analysis

In engineering, applied mathematics, and physics, the Buckingham π theorem is a key theorem in dimensional analysis. It is a formalisation of Rayleigh's method of dimensional analysis. Loosely, the theorem states that if there is a physically meaningful equation involving a certain number n of physical variables, then the original equation can be rewritten in terms of a set of p = n − k dimensionless parameters π1, π2, ..., πp constructed from the original variables, where k is the number of physical dimensions involved; it is obtained as the rank of a particular matrix.

<span class="mw-page-title-main">Quaternion</span> Noncommutative extension of the complex numbers

In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. The algebra of quaternions is often denoted by H, or in blackboard bold by Although multiplication of quaternions is noncommutative, it gives a definition of the quotient of two vectors in a three-dimensional space. Quaternions are generally represented in the form

A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula. As formulas are entirely constituted with symbols of various types, many symbols are needed for expressing all mathematics.

<span class="mw-page-title-main">Wave function</span> Mathematical description of the quantum state of a system

In quantum physics, a wave function is a mathematical description of the quantum state of an isolated quantum system. The most common symbols for a wave function are the Greek letters ψ and Ψ. Wave functions are composed of complex numbers. For example, a wave function might assign a complex number to each point in a region of space. The Born rule provides the means to turn these complex probability amplitudes into actual probabilities. In one common form, it says that the squared modulus of a wave function that depends upon position is the probability density of measuring a particle as being at a given place. The integral of a wavefunction's squared modulus over all the system's degrees of freedom must be equal to 1, a condition called normalization. Since the wave function is complex-valued, only its relative phase and relative magnitude can be measured; its value does not, in isolation, tell anything about the magnitudes or directions of measurable observables. One has to apply quantum operators, whose eigenvalues correspond to sets of possible results of measurements, to the wave function ψ and calculate the statistical distributions for measurable quantities.

<span class="mw-page-title-main">Complex conjugate</span> Fundamental operation on complex numbers

In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if and are real numbers then the complex conjugate of is The complex conjugate of is often denoted as or .

In physics, an observable is a physical property or physical quantity that can be measured. Examples include position and momentum. In systems governed by classical mechanics, an observable is a real-valued "function" on the set of all possible system states. In quantum physics, an observable is an operator, or gauge, where the property of the quantum state can be determined by some sequence of operations. For example, these operations might involve submitting the system to various electromagnetic fields and eventually reading a value.

<span class="mw-page-title-main">Irreducible representation</span> Type of group and algebra representation

In mathematics, specifically in the representation theory of groups and algebras, an irreducible representation or irrep of an algebraic structure is a nonzero representation that has no proper nontrivial subrepresentation , with closed under the action of .

In algebra, a split complex number is based on a hyperbolic unitj satisfying A split-complex number has two real number components x and y, and is written The conjugate of z is Since the product of a number z with its conjugate is an isotropic quadratic form.

In mathematical analysis, and applications in geometry, applied mathematics, engineering, and natural sciences, a function of a real variable is a function whose domain is the real numbers , or a subset of that contains an interval of positive length. Most real functions that are considered and studied are differentiable in some interval. The most widely considered such functions are the real functions, which are the real-valued functions of a real variable, that is, the functions of a real variable whose codomain is the set of real numbers.

Greek letters are used in mathematics, science, engineering, and other areas where mathematical notation is used as symbols for constants, special functions, and also conventionally for variables representing certain quantities. In these contexts, the capital letters and the small letters represent distinct and unrelated entities. Those Greek letters which have the same form as Latin letters are rarely used: capital A, B, E, Z, H, I, K, M, N, O, P, T, Y, X. Small ι, ο and υ are also rarely used, since they closely resemble the Latin letters i, o and u. Sometimes, font variants of Greek letters are used as distinct symbols in mathematics, in particular for ε/ϵ and π/ϖ. The archaic letter digamma (Ϝ/ϝ/ϛ) is sometimes used.

In mathematics, the derivative is a fundamental construction of differential calculus and admits many possible generalizations within the fields of mathematical analysis, combinatorics, algebra, geometry, etc.

In mathematics, a variable is a symbol that represents a mathematical object. A variable may represent a number, a vector, a matrix, a function, the argument of a function, a set, or an element of a set.

<span class="mw-page-title-main">Hilbert space</span> Type of topological vector space

In mathematics, Hilbert spaces allow the methods of linear algebra and calculus to be generalized from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space.

In quantum physics, a quantum state is a mathematical entity that embodies the knowledge of a quantum system. Quantum mechanics specifies the construction, evolution, and measurement of a quantum state. The result is a quantum-mechanical prediction for the system represented by the state. Knowledge of the quantum state, and the quantum mechanical rules for the system's evolution in time, exhausts all that can be known about a quantum system.

<span class="mw-page-title-main">Symmetry in quantum mechanics</span> Properties underlying modern physics

Symmetries in quantum mechanics describe features of spacetime and particles which are unchanged under some transformation, in the context of quantum mechanics, relativistic quantum mechanics and quantum field theory, and with applications in the mathematical formulation of the standard model and condensed matter physics. In general, symmetry in physics, invariance, and conservation laws, are fundamentally important constraints for formulating physical theories and models. In practice, they are powerful methods for solving problems and predicting what can happen. While conservation laws do not always give the answer to the problem directly, they form the correct constraints and the first steps to solving a multitude of problems.

This glossary of engineering terms is a list of definitions about the major concepts of engineering. Please see the bottom of the page for glossaries of specific fields of engineering.

References

  1. 1 2 3 Weisstein, Eric W. "Triangle". mathworld.wolfram.com. Retrieved 2022-03-21.
  2. 1 2 "Hexadecimal - Hexadecimal and character sets - GCSE Computer Science Revision". BBC Bitesize. Retrieved 2022-03-21.
  3. 1 2 "DECIMAL function". support.microsoft.com. Retrieved 2022-03-22.
  4. "BIPM - SI base units". bipm.org. 2014-10-07. Archived from the original on 2014-10-07.
  5. 1 2 "BIPM - SI derived units". bipm.org. 2014-10-07. Archived from the original on 2014-10-07. Retrieved 2022-03-22.
  6. Jensen, William B. (December 2005). "The Origins of the Symbols A and Z for Atomic Weight and Number". Journal of Chemical Education. 82 (12): 1764. Bibcode:2005JChEd..82.1764J. doi:10.1021/ed082p1764. ISSN   0021-9584.
  7. "22.1: Helmholtz Energy". Chemistry LibreTexts. 2014-06-21. Retrieved 2022-03-23.
  8. "The magnetic vector potential". farside.ph.utexas.edu. Retrieved 2022-03-21.
  9. Weisstein, Eric W. "Glaisher-Kinkelin Constant". mathworld.wolfram.com. Retrieved 2022-03-21.
  10. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 Stohner, Jürgen; Quack, Martin (2011). "A Concise Summary of Quantities, Units, and Symbols in Physical Chemistry" (PDF). Chemistry International. De Gruyter. 33 (4): Centerfold.
  11. "6.2.3.1: Arrhenius Equation". Chemistry LibreTexts. 2013-10-02. Retrieved 2022-04-03.
  12. Weisstein, Eric W. "Algebraic Number". mathworld.wolfram.com. Retrieved 2022-03-22.
  13. Liebscher, Dierck-Ekkehard (2005). Cosmology. Berlin: Springer. pp. 53–77. ISBN   9783540232612.
  14. Conversion factors and tables. Part 1. Basis of tables. Conversion factors. British Standards Institution (3rd revision ed.). London: BSI. 1974. p. 7. ISBN   0-580-08471-X. OCLC   32212391.{{cite book}}: CS1 maint: others (link)
  15. Conversion factors and tables. Part 1. Basis of tables. Conversion factors. British Standards Institution (3rd revision ed.). London: BSI. 1974. p. 4. ISBN   0-580-08471-X. OCLC   32212391.{{cite book}}: CS1 maint: others (link)
  16. "Arithmetic Progression - Formula, Examples | AP Formula". Cuemath. Retrieved 2022-03-24.
  17. Weisstein, Eric W. "Ball". mathworld.wolfram.com. Retrieved 2022-03-24.
  18. Prasad, Paras N. (16 January 2004). Introduction to Biophotonics. John Wiley & Sons. p. 12. ISBN   978-0-471-46539-3.
  19. Quantities, Units and Symbols in Physical Chemistry. International Union of Pure and Applied Chemistry. 1993. p. 20. ISBN   0-632-03583-8.
  20. "6.4.1: Eyring equation". Chemistry LibreTexts. 2013-10-02. Retrieved 2022-04-03.
  21. "Quantum Numbers for Atoms". Chemistry LibreTexts. 2013-10-02. Retrieved 2022-04-07.
  22. 1 2 3 4 5 6 Kardar, Mehran (2007). Statistical Physics of Particles. Cambridge University Press. ISBN   978-0-521-87342-0. OCLC   860391091.
  23. 1 2 "Analytical Compendium" (PDF). Archived from the original (PDF) on May 5, 2017. Retrieved October 5, 2023.
  24. 1 2 "Velocity, acceleration and distance - Motion - Edexcel - GCSE Physics (Single Science) Revision - Edexcel". BBC Bitesize. Retrieved 2022-03-26.
  25. "frequency | Definition, Symbols, & Formulas | Britannica". www.britannica.com. Retrieved 2022-03-26.
  26. Durrer, Ruth (2021). The cosmic microwave background (2nd ed.). Cambridge, United Kingdom: Cambridge University Press. ISBN   978-1-316-47152-4. OCLC   1182021387.
  27. Quantities, Units and Symbols in Physical Chemistry. International Union of Pure and Applied Chemistry. 1993. p. 56. ISBN   0-632-03583-8.