Neutron

Last updated
Neutron
Quark structure neutron.svg
The quark content of the neutron. The color assignment of individual quarks is arbitrary, but all three colors must be present. Forces between quarks are mediated by gluons.
Classification Baryon
Composition 1 up quark, 2 down quarks
Statistics Fermionic
Interactions Gravity, weak, strong, electromagnetic
Symbol
n
,
n0
,
N0
Antiparticle Antineutron
Theorized Ernest Rutherford [1] (1920)
Discovered James Chadwick [2] (1932)
Mass 1.674927471(21)×10−27  kg [3]
939.5654133(58)  MeV/c2 [3]
1.00866491588(49)  u [3]
Mean lifetime 881.5(15) s (free)
Electric charge 0  e
(−2±8)×10−22  e (experimental limits) [4]
Electric dipole moment < 2.9×10−26 e⋅cm (experimental upper limit)
Electric polarizability 1.16(15)×10−3 fm3
Magnetic moment −0.96623650(23)×10−26   J·T −1 [3]
−1.04187563(25)×10−3  μB [3]
−1.91304273(45)  μN [3]
Magnetic polarizability 3.7(20)×10−4 fm3
Spin 1/2
Isospin 1/2
Parity +1
Condensed I ( J P ) = 1/2(1/2+)

The neutron is a subatomic particle, symbol
n
or
n0
, with no net electric charge and a mass slightly larger than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons behave similarly within the nucleus, and each has a mass of approximately one atomic mass unit, they are both referred to as nucleons. [5] Their properties and interactions are described by nuclear physics.

Subatomic particle particle whose size or mass is less than that of the atom, or of which the atom is composed; small quantum particle

In the physical sciences, subatomic particles are particles much smaller than atoms. The two types of subatomic particles are: elementary particles, which according to current theories are not made of other particles; and composite particles. Particle physics and nuclear physics study these particles and how they interact. The idea of a particle underwent serious rethinking when experiments showed that light could behave like a stream of particles as well as exhibiting wave-like properties. This led to the new concept of wave–particle duality to reflect that quantum-scale "particles" behave like both particles and waves. Another new concept, the uncertainty principle, states that some of their properties taken together, such as their simultaneous position and momentum, cannot be measured exactly. In more recent times, wave–particle duality has been shown to apply not only to photons but to increasingly massive particles as well.

Electric charge physical property that quantifies an objects interaction with electric fields

Electric charge is the physical property of matter that causes it to experience a force when placed in an electromagnetic field. There are two types of electric charges; positive and negative. Like charges repel and unlike attract. An object with an absence of net charge is referred to as neutral. Early knowledge of how charged substances interact is now called classical electrodynamics, and is still accurate for problems that do not require consideration of quantum effects.

Mass Quantity of matter

Mass is both a property of a physical body and a measure of its resistance to acceleration when a net force is applied. The object's mass also determines the strength of its gravitational attraction to other bodies.

Contents

The chemical and nuclear properties of the nucleus are determined by the number of protons, called the atomic number, and the number of neutrons, called the neutron number. The atomic mass number is the total number of nucleons. For example, carbon has atomic number 6, and its abundant carbon-12 isotope has 6 neutrons, whereas its rare carbon-13 isotope has 7 neutrons. Some elements occur in nature with only one stable isotope, such as fluorine. Other elements occur with many stable isotopes, such as tin with ten stable isotopes.

Atomic number number of protons found in the nucleus of an atom

The atomic number or proton number of a chemical element is the number of protons found in the nucleus of an atom. It is identical to the charge number of the nucleus. The atomic number uniquely identifies a chemical element. In an uncharged atom, the atomic number is also equal to the number of electrons.

Neutron number number of neutrons in a nuclide

The neutron number, symbol N, is the number of neutrons in a nuclide.

Carbon Chemical element with atomic number 6

Carbon is a chemical element with symbol C and atomic number 6. It is nonmetallic and tetravalent—making four electrons available to form covalent chemical bonds. It belongs to group 14 of the periodic table. Three isotopes occur naturally, 12C and 13C being stable, while 14C is a radionuclide, decaying with a half-life of about 5,730 years. Carbon is one of the few elements known since antiquity.

Within the nucleus, protons and neutrons are bound together through the nuclear force. Neutrons are required for the stability of nuclei, with the exception of the single-proton hydrogen atom. Neutrons are produced copiously in nuclear fission and fusion. They are a primary contributor to the nucleosynthesis of chemical elements within stars through fission, fusion, and neutron capture processes.

Nuclear force A force that acts between the protons and neutrons of atoms

The nuclear force is a force that acts between the protons and neutrons of atoms. Neutrons and protons, both nucleons, are affected by the nuclear force almost identically. Since protons have charge +1 e, they experience an electric force that tends to push them apart, but at short range the attractive nuclear force is strong enough to overcome the electromagnetic force. The nuclear force binds nucleons into atomic nuclei.

Hydrogen Chemical element with atomic number 1

Hydrogen is a chemical element with symbol H and atomic number 1. With a standard atomic weight of 1.008, hydrogen is the lightest element in the periodic table. Its monatomic form (H) is the most abundant chemical substance in the Universe, constituting roughly 75% of all baryonic mass. Non-remnant stars are mainly composed of hydrogen in the plasma state. The most common isotope of hydrogen, termed protium, has one proton and no neutrons.

Nuclear fission nuclear reaction or a radioactive decay process in which the nucleus of an atom splits into smaller parts

In nuclear physics and nuclear chemistry, nuclear fission is a nuclear reaction or a radioactive decay process in which the nucleus of an atom splits into smaller, lighter nuclei. The fission process often produces free neutrons and gamma photons, and releases a very large amount of energy even by the energetic standards of radioactive decay.

The neutron is essential to the production of nuclear power. In the decade after the neutron was discovered by James Chadwick in 1932, [6] neutrons were used to induce many different types of nuclear transmutations. With the discovery of nuclear fission in 1938, [7] it was quickly realized that, if a fission event produced neutrons, each of these neutrons might cause further fission events, etc., in a cascade known as a nuclear chain reaction. [8] These events and findings led to the first self-sustaining nuclear reactor (Chicago Pile-1, 1942) and the first nuclear weapon (Trinity, 1945).

James Chadwick English physicist

Sir James Chadwick, was a British physicist who was awarded the 1935 Nobel Prize in Physics for his discovery of the neutron in 1932. In 1941, he wrote the final draft of the MAUD Report, which inspired the U.S. government to begin serious atomic bomb research efforts. He was the head of the British team that worked on the Manhattan Project during the Second World War. He was knighted in Britain in 1945 for his achievements in physics.

Nuclear transmutation conversion of an atom from one element to another

Nuclear transmutation is the conversion of one chemical element or an isotope into another chemical element. Because any element is defined by its number of protons in its atoms, i.e. in the atomic nucleus, nuclear transmutation occurs in any process where the number of protons or neutrons in the nucleus is changed.

Nuclear chain reaction one single nuclear reaction causes more subsequent nuclear reactions

A nuclear chain reaction occurs when one single nuclear reaction causes an average of one or more subsequent nuclear reactions, this leading to the possibility of a self-propagating series of these reactions. The specific nuclear reaction may be the fission of heavy isotopes. The nuclear chain reaction releases several million times more energy per reaction than any chemical reaction.

Free neutrons, while not directly ionizing atoms, cause ionizing radiation. As such they can be a biological hazard, depending upon dose. [8] A small natural "neutron background" flux of free neutrons exists on Earth, caused by cosmic ray showers, and by the natural radioactivity of spontaneously fissionable elements in the Earth's crust. [9] Dedicated neutron sources like neutron generators, research reactors and spallation sources produce free neutrons for use in irradiation and in neutron scattering experiments.

Cosmic ray High-energy particle, mainly originating outside the Solar system

Cosmic rays are high-energy radiation, mainly originating outside the Solar System and even from distant galaxies. Upon impact with the Earth's atmosphere, cosmic rays can produce showers of secondary particles that sometimes reach the surface. Composed primarily of high-energy protons and atomic nuclei, they are originated either from the sun or from outside of our solar system. Data from the Fermi Space Telescope (2013) have been interpreted as evidence that a significant fraction of primary cosmic rays originate from the supernova explosions of stars. Active galactic nuclei also appear to produce cosmic rays, based on observations of neutrinos and gamma rays from blazar TXS 0506+056 in 2018.

Air shower (physics) shower of particles from a high energy cosmic ray hitting Earths atmosphere

An air shower is an extensive cascade of ionized particles and electromagnetic radiation produced in the atmosphere when a primary cosmic ray enters the atmosphere. When a particle, which could be a proton, a nucleus, an electron, a photon, or (rarely) a positron, strikes an atom's nucleus in the air it produces many energetic hadrons. The unstable hadrons decay in the air speedily into other particles and electromagnetic radiation, which are part of the shower components. The secondary radiation rains down, including x-rays, muons, protons, antiprotons, alpha particles, pions, electrons, positrons, and neutrons.

Neutron source device that emits neutrons

A neutron source is any device that emits neutrons, irrespective of the mechanism used to produce the neutrons. Neutron sources are used in physics, engineering, medicine, nuclear weapons, petroleum exploration, biology, chemistry, and nuclear power.

Description

An atomic nucleus is formed by a number of protons, Z (the atomic number), and a number of neutrons, N (the neutron number), bound together by the nuclear force. The atomic number defines the chemical properties of the atom, and the neutron number determines the isotope or nuclide. [8] The terms isotope and nuclide are often used synonymously, but they refer to chemical and nuclear properties, respectively. Strictly speaking, isotopes are two or more nuclides with the same number of protons; nuclides with the same number of neutrons are called isotones. The atomic mass number, symbol A, equals Z+N. Nuclides with the same atomic mass number are called isobars. The nucleus of the most common isotope of the hydrogen atom (with the chemical symbol 1H) is a lone proton. The nuclei of the heavy hydrogen isotopes deuterium (D or 2H) and tritium (T or 3H) contain one proton bound to one and two neutrons, respectively. All other types of atomic nuclei are composed of two or more protons and various numbers of neutrons. The most common nuclide of the common chemical element lead, 208Pb, has 82 protons and 126 neutrons, for example. The table of nuclides comprises all the known nuclides. Even though it is not a chemical element, the neutron is included in this table. [10]

Atomic nucleus core of the atom; composed of bound nucleons (protons and neutrons)

The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron in 1932, models for a nucleus composed of protons and neutrons were quickly developed by Dmitri Ivanenko and Werner Heisenberg. An atom is composed of a positively-charged nucleus, with a cloud of negatively-charged electrons surrounding it, bound together by electrostatic force. Almost all of the mass of an atom is located in the nucleus, with a very small contribution from the electron cloud. Protons and neutrons are bound together to form a nucleus by the nuclear force.

Proton nucleon (constituent of the nucleus of the atom) that has positive electric charge; symbol p

A proton is a subatomic particle, symbol
p
or
p+
, with a positive electric charge of +1e elementary charge and a mass slightly less than that of a neutron. Protons and neutrons, each with masses of approximately one atomic mass unit, are collectively referred to as "nucleons".

Chemical element a species of atoms having the same number of protons in the atomic nucleus

A chemical element is a species of atom having the same number of protons in their atomic nuclei. For example, the atomic number of oxygen is 8, so the element oxygen consists of all atoms which have exactly 8 protons.

The free neutron has a mass of 939,565,413.3 eV/c2, or 1.674927471×10−27  kg , or 1.00866491588  u . [3] The neutron has a mean square radius of about 0.8×10−15  m , or 0.8  fm, [11] and it is a spin-½ fermion. [12] The neutron has no measurable electric charge. With its positive electric charge, the proton is directly influenced by electric fields, whereas the neutron is unaffected by electric fields. The neutron has a magnetic moment, however, so the neutron is influenced by magnetic fields. The neutron's magnetic moment has a negative value, because its orientation is opposite to the neutron's spin. [13]

A free neutron is unstable, decaying to a proton, electron and antineutrino with a mean lifetime of just under 15 minutes (881.5±1.5 s). [14] This radioactive decay, known as beta decay, is possible because the mass of the neutron is slightly greater than the proton. The free proton is stable. Neutrons or protons bound in a nucleus can be stable or unstable, however, depending on the nuclide. Beta decay, in which neutrons decay to protons, or vice versa, is governed by the weak force, and it requires the emission or absorption of electrons and neutrinos, or their antiparticles.

Nuclear fission caused by absorption of a neutron by uranium-235. The heavy nuclide fragments into lighter components and additional neutrons. Nuclear fission.svg
Nuclear fission caused by absorption of a neutron by uranium-235. The heavy nuclide fragments into lighter components and additional neutrons.

Protons and neutrons behave almost identically under the influence of the nuclear force within the nucleus. The concept of isospin, in which the proton and neutron are viewed as two quantum states of the same particle, is used to model the interactions of nucleons by the nuclear or weak forces. Because of the strength of the nuclear force at short distances, the binding energy of nucleons is more than seven orders of magnitude larger than the electromagnetic energy binding electrons in atoms. Nuclear reactions (such as nuclear fission) therefore have an energy density that is more than ten million times that of chemical reactions. Because of the mass–energy equivalence, nuclear binding energies reduce the mass of nuclei. Ultimately, the ability of the nuclear force to store energy arising from the electromagnetic repulsion of nuclear components is the basis for most of the energy that makes nuclear reactors or bombs possible. In nuclear fission, the absorption of a neutron by a heavy nuclide (e.g., uranium-235) causes the nuclide to become unstable and break into light nuclides and additional neutrons. The positively charged light nuclides then repel, releasing electromagnetic potential energy.

The neutron is classified as a hadron , because it is a composite particle made of quarks. The neutron is also classified as a baryon , because it is composed of three valence quarks. [15] The finite size of the neutron and its magnetic moment indicates that the neutron is a composite particle, as opposed to being an elementary particle. A neutron contains two down quarks with charge −13 e and one up quark with charge +23e.

Like protons, the quarks of the neutron are held together by the strong force, mediated by gluons. [16] The nuclear force results from secondary effects of the more fundamental strong force.

Discovery

The story of the discovery of the neutron and its properties is central to the extraordinary developments in atomic physics that occurred in the first half of the 20th century, leading ultimately to the atomic bomb in 1945. In the 1911 Rutherford model, the atom consisted of a small positively charged massive nucleus surrounded by a much larger cloud of negatively charged electrons. In 1920, Rutherford suggested that the nucleus consisted of positive protons and neutrally-charged particles, suggested to be a proton and an electron bound in some way. [17] Electrons were assumed to reside within the nucleus because it was known that beta radiation consisted of electrons emitted from the nucleus. [17] Rutherford called these uncharged particles neutrons, by the Latin root for neutralis (neuter) and the Greek suffix -on (a suffix used in the names of subatomic particles, i.e. electron and proton ). [18] [19] References to the word neutron in connection with the atom can be found in the literature as early as 1899, however. [20]

Throughout the 1920s, physicists assumed that the atomic nucleus was composed of protons and "nuclear electrons" [21] [22] but there were obvious problems. It was difficult to reconcile the proton–electron model for nuclei with the Heisenberg uncertainty relation of quantum mechanics. [23] [24] The Klein paradox, [25] discovered by Oskar Klein in 1928, presented further quantum mechanical objections to the notion of an electron confined within a nucleus. [23] Observed properties of atoms and molecules were inconsistent with the nuclear spin expected from the proton–electron hypothesis. Both protons and electrons carry an intrinsic spin of ½ ħ. Isotopes of the same species (i.e having the same number of protons) can have both integer or fractional spin, i.e. the neutron spin must be also fractional (½ ħ). However, there is no way to arrange the spins of an electron and a proton (supposed to bond to form a neutron) to get the fractional spin of a neutron.

In 1931, Walther Bothe and Herbert Becker found that if alpha particle radiation from polonium fell on beryllium, boron, or lithium, an unusually penetrating radiation was produced. The radiation was not influenced by an electric field, so Bothe and Becker assumed it was gamma radiation. [26] [27] The following year Irène Joliot-Curie and Frédéric Joliot-Curie in Paris showed that if this "gamma" radiation fell on paraffin, or any other hydrogen-containing compound, it ejected protons of very high energy. [28] Neither Rutherford nor James Chadwick at the Cavendish Laboratory in Cambridge were convinced by the gamma ray interpretation. [29] Chadwick quickly performed a series of experiments that showed that the new radiation consisted of uncharged particles with about the same mass as the proton. [6] [30] [31] These particles were neutrons. Chadwick won the Nobel Prize in Physics for this discovery in 1935. [2]

Models depicting the nucleus and electron energy levels in hydrogen, helium, lithium, and neon atoms. In reality, the diameter of the nucleus is about 100,000 times smaller than the diameter of the atom. Blausen 0342 ElectronEnergyLevels.png
Models depicting the nucleus and electron energy levels in hydrogen, helium, lithium, and neon atoms. In reality, the diameter of the nucleus is about 100,000 times smaller than the diameter of the atom.

Models for atomic nucleus consisting of protons and neutrons were quickly developed by Werner Heisenberg [32] [33] [34] and others. [35] [36] The proton–neutron model explained the puzzle of nuclear spins. The origins of beta radiation were explained by Enrico Fermi in 1934 by the process of beta decay, in which the neutron decays to a proton by creating an electron and a (as yet undiscovered) neutrino. [37] In 1935 Chadwick and his doctoral student Maurice Goldhaber, reported the first accurate measurement of the mass of the neutron. [38] [39]

By 1934, Fermi had bombarded heavier elements with neutrons to induce radioactivity in elements of high atomic number. In 1938, Fermi received the Nobel Prize in Physics "for his demonstrations of the existence of new radioactive elements produced by neutron irradiation, and for his related discovery of nuclear reactions brought about by slow neutrons". [40] In 1938 Otto Hahn, Lise Meitner, and Fritz Strassmann discovered nuclear fission, or the fractionation of uranium nuclei into light elements, induced by neutron bombardment. [41] [42] [43] In 1945 Hahn received the 1944 Nobel Prize in Chemistry "for his discovery of the fission of heavy atomic nuclei." [44] [45] [46] The discovery of nuclear fission would lead to the development of nuclear power and the atomic bomb by the end of World War II.

Beta decay and the stability of the nucleus

The Feynman diagram for beta decay of a neutron into a proton, electron, and electron antineutrino via an intermediate heavy W boson Beta Negative Decay.svg
The Feynman diagram for beta decay of a neutron into a proton, electron, and electron antineutrino via an intermediate heavy W boson

Under the Standard Model of particle physics, the only possible decay mode for the neutron that conserves baryon number is for one of the neutron's quarks to change flavour via the weak interaction. The decay of one of the neutron's down quarks into a lighter up quark can be achieved by the emission of a W boson. By this process, the Standard Model description of beta decay, the neutron decays into a proton (which contains one down and two up quarks), an electron, and an electron antineutrino.

Since interacting protons have a mutual electromagnetic repulsion that is stronger than their attractive nuclear interaction, neutrons are a necessary constituent of any atomic nucleus that contains more than one proton (see diproton and neutron–proton ratio). [47] Neutrons bind with protons and one another in the nucleus via the nuclear force, effectively moderating the repulsive forces between the protons and stabilizing the nucleus.

Free neutron decay

Outside the nucleus, free neutrons are unstable and have a mean lifetime of 881.5±1.5 s (about 14 minutes, 42 seconds); therefore the half-life for this process (which differs from the mean lifetime by a factor of ln(2) = 0.693) is 611.0±1.0 s (about 10 minutes, 11 seconds). [14] Beta decay of the neutron, described above, can be denoted by the radioactive decay: [48]


n0

p+
+
e
+
ν
e

where
p+
,
e
, and
ν
e
denote the proton, electron and electron antineutrino, respectively. For the free neutron the decay energy for this process (based on the masses of the neutron, proton, and electron) is 0.782343 MeV. The maximal energy of the beta decay electron (in the process wherein the neutrino receives a vanishingly small amount of kinetic energy) has been measured at 0.782 ± 0.013 MeV. [49] The latter number is not well-enough measured to determine the comparatively tiny rest mass of the neutrino (which must in theory be subtracted from the maximal electron kinetic energy) as well as neutrino mass is constrained by many other methods.

A small fraction (about one in 1000) of free neutrons decay with the same products, but add an extra particle in the form of an emitted gamma ray:


n0

p+
+
e
+
ν
e
+
γ

This gamma ray may be thought of as an "internal bremsstrahlung" that arises from the electromagnetic interaction of the emitted beta particle with the proton. Internal bremsstrahlung gamma ray production is also a minor feature of beta decays of bound neutrons (as discussed below).

A schematic of the nucleus of an atom indicating
b
radiation, the emission of a fast electron from the nucleus (the accompanying antineutrino is omitted). In the Rutherford model for the nucleus, red spheres were protons with positive charge and blue spheres were protons tightly bound to an electron with no net charge.
The inset shows beta decay of a free neutron as it is understood today; an electron and antineutrino are created in this process. Beta-minus Decay.svg
A schematic of the nucleus of an atom indicating
β
radiation, the emission of a fast electron from the nucleus (the accompanying antineutrino is omitted). In the Rutherford model for the nucleus, red spheres were protons with positive charge and blue spheres were protons tightly bound to an electron with no net charge.
The inset shows beta decay of a free neutron as it is understood today; an electron and antineutrino are created in this process.

A very small minority of neutron decays (about four per million) are so-called "two-body (neutron) decays", in which a proton, electron and antineutrino are produced as usual, but the electron fails to gain the 13.6 eV necessary energy to escape the proton (the ionization energy of hydrogen), and therefore simply remains bound to it, as a neutral hydrogen atom (one of the "two bodies"). In this type of free neutron decay, almost all of the neutron decay energy is carried off by the antineutrino (the other "body"). (The hydrogen atom recoils with a speed of only about (decay energy)/(hydrogen rest energy) times the speed of light, or 250 km/s.)

The transformation of a free proton to a neutron (plus a positron and a neutrino) is energetically impossible, since a free neutron has a greater mass than a free proton. But a high-energy collision of a proton and an electron or neutrino can result in a neutron.

Bound neutron decay

While a free neutron has a half life of about 10.2 min, most neutrons within nuclei are stable. According to the nuclear shell model, the protons and neutrons of a nuclide are a quantum mechanical system organized into discrete energy levels with unique quantum numbers. For a neutron to decay, the resulting proton requires an available state at lower energy than the initial neutron state. In stable nuclei the possible lower energy states are all filled, meaning they are each occupied by two protons with spin up and spin down. The Pauli exclusion principle therefore disallows the decay of a neutron to a proton within stable nuclei. The situation is similar to electrons of an atom, where electrons have distinct atomic orbitals and are prevented from decaying to lower energy states, with the emission of a photon, by the exclusion principle.

Neutrons in unstable nuclei can decay by beta decay as described above. In this case, an energetically allowed quantum state is available for the proton resulting from the decay. One example of this decay is carbon-14 (6 protons, 8 neutrons) that decays to nitrogen-14 (7 protons, 7 neutrons) with a half-life of about 5,730 years.

Inside a nucleus, a proton can transform into a neutron via inverse beta decay, if an energetically allowed quantum state is available for the neutron. This transformation occurs by emission of a positron and an electron neutrino:


p+

n0
+
e+
+
ν
e

The transformation of a proton to a neutron inside of a nucleus is also possible through electron capture:


p+
+
e

n0
+
ν
e

Positron capture by neutrons in nuclei that contain an excess of neutrons is also possible, but is hindered because positrons are repelled by the positive nucleus, and quickly annihilate when they encounter electrons.

Competition of beta decay types

Three types of beta decay in competition are illustrated by the single isotope copper-64 (29 protons, 35 neutrons), which has a half-life of about 12.7 hours. This isotope has one unpaired proton and one unpaired neutron, so either the proton or the neutron can decay. This particular nuclide is almost equally likely to undergo proton decay (by positron emission, 18% or by electron capture, 43%) or neutron decay (by electron emission, 39%).

Intrinsic properties

Mass

The mass of a neutron cannot be directly determined by mass spectrometry due to lack of electric charge. However, since the masses of a proton and of a deuteron can be measured with a mass spectrometer, the mass of a neutron can be deduced by subtracting proton mass from deuteron mass, with the difference being the mass of the neutron plus the binding energy of deuterium (expressed as a positive emitted energy). The latter can be directly measured by measuring the energy () of the single 0.7822 MeV gamma photon emitted when neutrons are captured by protons (this is exothermic and happens with zero-energy neutrons), plus the small recoil kinetic energy () of the deuteron (about 0.06% of the total energy).

The energy of the gamma ray can be measured to high precision by X-ray diffraction techniques, as was first done by Bell and Elliot in 1948. The best modern (1986) values for neutron mass by this technique are provided by Greene, et al. [50] These give a neutron mass of:

mneutron= 1.008644904(14)  u

The value for the neutron mass in MeV is less accurately known, due to less accuracy in the known conversion of u to MeV: [51]

mneutron= 939.56563(28)  MeV/c2 .

Another method to determine the mass of a neutron starts from the beta decay of the neutron, when the momenta of the resulting proton and electron are measured.

Electric charge

The total electric charge of the neutron is 0  e . This zero value has been tested experimentally, and the present experimental limit for the charge of the neutron is −2(8)×10−22  e , [4] or −3(13)×10−41  C . This value is consistent with zero, given the experimental uncertainties (indicated in parentheses). By comparison, the charge of the proton is +1  e .

Magnetic moment

Even though the neutron is a neutral particle, the magnetic moment of a neutron is not zero. The neutron is not affected by electric fields, but it is affected by magnetic fields. The magnetic moment of the neutron is an indication of its quark substructure and internal charge distribution. [52] The value for the neutron's magnetic moment was first directly measured by Luis Alvarez and Felix Bloch at Berkeley, California, in 1940, [53] using an extension of the magnetic resonance methods developed by Rabi. Alvarez and Bloch determined the magnetic moment of the neutron to be μn= −1.93(2) μN, where μN is the nuclear magneton.

In the quark model for hadrons, the neutron is composed of one up quark (charge +2/3 e) and two down quarks (charge −1/3 e). [52] The magnetic moment of the neutron can be modeled as a sum of the magnetic moments of the constituent quarks. [54] The calculation assumes that the quarks behave like pointlike Dirac particles, each having their own magnetic moment. Simplistically, the magnetic moment of the neutron can be viewed as resulting from the vector sum of the three quark magnetic moments, plus the orbital magnetic moments caused by the movement of the three charged quarks within the neutron.

In one of the early successes of the Standard Model (SU(6) theory, now understood in terms of quark behavior), in 1964 Mirza A.B. Beg, Benjamin W. Lee, and Abraham Pais theoretically calculated the ratio of proton to neutron magnetic moments to be −3/2, which agrees with the experimental value to within 3%. [55] [56] [57] The measured value for this ratio is −1.45989805(34). [3] A contradiction of the quantum mechanical basis of this calculation with the Pauli exclusion principle, led to the discovery of the color charge for quarks by Oscar W. Greenberg in 1964. [55]

The above treatment compares neutrons with protons, allowing the complex behavior of quarks to be subtracted out between models, and merely exploring what the effects would be of differing quark charges (or quark type). Such calculations are enough to show that the interior of neutrons is very much like that of protons, save for the difference in quark composition with a down quark in the neutron replacing an up quark in the proton.

The neutron magnetic moment can be roughly computed by assuming a simple nonrelativistic, quantum mechanical wavefunction for baryons composed of three quarks. A straightforward calculation gives fairly accurate estimates for the magnetic moments of neutrons, protons, and other baryons. [54] For a neutron, the end result of this calculation is that the magnetic moment of the neutron is given by μn= 4/3 μd − 1/3 μu, where μd and μu are the magnetic moments for the down and up quarks, respectively. This result combines the intrinsic magnetic moments of the quarks with their orbital magnetic moments, and assumes the three quarks are in a particular, dominant quantum state.

BaryonMagnetic moment
of quark model
Computed
()
Observed
()
p4/3 μu − 1/3 μd2.792.793
n4/3 μd − 1/3 μu−1.86−1.913

The results of this calculation are encouraging, but the masses of the up or down quarks were assumed to be 1/3 the mass of a nucleon. [54] The masses of the quarks are actually only about 1% that of a nucleon. [58] The discrepancy stems from the complexity of the Standard Model for nucleons, where most of their mass originates in the gluon fields, virtual particles, and their associated energy that are essential aspects of the strong force. [58] [59] Furthermore, the complex system of quarks and gluons that constitute a neutron requires a relativistic treatment. [60] The nucleon magnetic moment has been successfully computed numerically from first principles, however, including all the effects mentioned and using more realistic values for the quark masses. The calculation gave results that were in fair agreement with measurement, but it required significant computing resources. [61] [62]

Spin

The neutron is a spin 1/2 particle, that is, it is a fermion with intrinsic angular momentum equal to 1/2 ħ, where ħ is the reduced Planck constant. For many years after the discovery of the neutron, its exact spin was ambiguous. Although it was assumed to be a spin 1/2 Dirac particle, the possibility that the neutron was a spin 3/2 particle lingered. The interactions of the neutron's magnetic moment with an external magnetic field were exploited to finally determine the spin of the neutron. [63] In 1949, Hughes and Burgy measured neutrons reflected from a ferromagnetic mirror and found that the angular distribution of the reflections was consistent with spin 1/2. [64] In 1954, Sherwood, Stephenson, and Bernstein employed neutrons in a Stern–Gerlach experiment that used a magnetic field to separate the neutron spin states. They recorded two such spin states, consistent with a spin 1/2 particle. [63] [65]

As a fermion, the neutron is subject to the Pauli exclusion principle; two neutrons cannot have the same quantum numbers. This is the source of the degeneracy pressure which makes neutron stars possible.

Structure and geometry of charge distribution

An article published in 2007 featuring a model-independent analysis concluded that the neutron has a negatively charged exterior, a positively charged middle, and a negative core. [66] In a simplified classical view, the negative "skin" of the neutron assists it to be attracted to the protons with which it interacts in the nucleus. (However, the main attraction between neutrons and protons is via the nuclear force, which does not involve electric charge.)

The simplified classical view of the neutron's charge distribution also "explains" the fact that the neutron magnetic dipole points in the opposite direction from its spin angular momentum vector (as compared to the proton). This gives the neutron, in effect, a magnetic moment which resembles a negatively charged particle. This can be reconciled classically with a neutral neutron composed of a charge distribution in which the negative sub-parts of the neutron have a larger average radius of distribution, and therefore contribute more to the particle's magnetic dipole moment, than do the positive parts that are, on average, nearer the core.

Electric dipole moment

The Standard Model of particle physics predicts a tiny separation of positive and negative charge within the neutron leading to a permanent electric dipole moment. [67] The predicted value is, however, well below the current sensitivity of experiments. From several unsolved puzzles in particle physics, it is clear that the Standard Model is not the final and full description of all particles and their interactions. New theories going beyond the Standard Model generally lead to much larger predictions for the electric dipole moment of the neutron. Currently, there are at least four experiments trying to measure for the first time a finite neutron electric dipole moment, including:

Anti-neutron

The antineutron is the antiparticle of the neutron. It was discovered by Bruce Cork in 1956, a year after the antiproton was discovered. CPT-symmetry puts strong constraints on the relative properties of particles and antiparticles, so studying antineutrons provides stringent tests on CPT-symmetry. The fractional difference in the masses of the neutron and antineutron is (9±6)×10−5. Since the difference is only about two standard deviations away from zero, this does not give any convincing evidence of CPT-violation. [14]

Neutron compounds

Dineutrons and tetraneutrons

The existence of stable clusters of 4 neutrons, or tetraneutrons, has been hypothesised by a team led by Francisco-Miguel Marqués at the CNRS Laboratory for Nuclear Physics based on observations of the disintegration of beryllium-14 nuclei. This is particularly interesting because current theory suggests that these clusters should not be stable.

In February 2016, Japanese physicist Susumu Shimoura of the University of Tokyo and co-workers reported they had observed the purported tetraneutrons for the first time experimentally. [73] Nuclear physicists around the world say this discovery, if confirmed, would be a milestone in the field of nuclear physics and certainly would deepen our understanding of the nuclear forces. [74] [75]

The dineutron is another hypothetical particle. In 2012, Artemis Spyrou from Michigan State University and coworkers reported that they observed, for the first time, the dineutron emission in the decay of 16Be. The dineutron character is evidenced by a small emission angle between the two neutrons. The authors measured the two-neutron separation energy to be 1.35(10) MeV, in good agreement with shell model calculations, using standard interactions for this mass region. [76]

Neutronium and neutron stars

At extremely high pressures and temperatures, nucleons and electrons are believed to collapse into bulk neutronic matter, called neutronium. This is presumed to happen in neutron stars.

The extreme pressure inside a neutron star may deform the neutrons into a cubic symmetry, allowing tighter packing of neutrons. [77]

Detection

The common means of detecting a charged particle by looking for a track of ionization (such as in a cloud chamber) does not work for neutrons directly. Neutrons that elastically scatter off atoms can create an ionization track that is detectable, but the experiments are not as simple to carry out; other means for detecting neutrons, consisting of allowing them to interact with atomic nuclei, are more commonly used. The commonly used methods to detect neutrons can therefore be categorized according to the nuclear processes relied upon, mainly neutron capture or elastic scattering. [78]

Neutron detection by neutron capture

A common method for detecting neutrons involves converting the energy released from neutron capture reactions into electrical signals. Certain nuclides have a high neutron capture cross section, which is the probability of absorbing a neutron. Upon neutron capture, the compound nucleus emits more easily detectable radiation, for example an alpha particle, which is then detected. The nuclides 3
He
, 6
Li
, 10
B
, 233
U
, 235
U
, 237
Np
, and 239
Pu
are useful for this purpose.

Neutron detection by elastic scattering

Neutrons can elastically scatter off nuclei, causing the struck nucleus to recoil. Kinematically, a neutron can transfer more energy to a light nucleus such as hydrogen or helium than to a heavier nucleus. Detectors relying on elastic scattering are called fast neutron detectors. Recoiling nuclei can ionize and excite further atoms through collisions. Charge and/or scintillation light produced in this way can be collected to produce a detected signal. A major challenge in fast neutron detection is discerning such signals from erroneous signals produced by gamma radiation in the same detector.

Fast neutron detectors have the advantage of not requiring a moderator, and are therefore capable of measuring the neutron's energy, time of arrival, and in certain cases direction of incidence.

Sources and production

Free neutrons are unstable, although they have the longest half-life of any unstable subatomic particle by several orders of magnitude. Their half-life is still only about 10 minutes, however, so they can be obtained only from sources that produce them continuously.

Natural neutron background. A small natural background flux of free neutrons exists everywhere on Earth. In the atmosphere and deep into the ocean, the "neutron background" is caused by muons produced by cosmic ray interaction with the atmosphere. These high-energy muons are capable of penetration to considerable depths in water and soil. There, in striking atomic nuclei, among other reactions they induce spallation reactions in which a neutron is liberated from the nucleus. Within the Earth's crust a second source is neutrons produced primarily by spontaneous fission of uranium and thorium present in crustal minerals. The neutron background is not strong enough to be a biological hazard, but it is of importance to very high resolution particle detectors that are looking for very rare events, such as (hypothesized) interactions that might be caused by particles of dark matter. [9] Recent research has shown that even thunderstorms can produce neutrons with energies of up to several tens of MeV. [79] Recent research has shown that the fluence of these neutrons lies between 10−9 and 10−13 per ms and per m2 depending on the detection altitude. The energy of most of these neutrons, even with initial energies of 20 MeV, decreases down to the keV range within 1 ms. [80]

Even stronger neutron background radiation is produced at the surface of Mars, where the atmosphere is thick enough to generate neutrons from cosmic ray muon production and neutron-spallation, but not thick enough to provide significant protection from the neutrons produced. These neutrons not only produce a Martian surface neutron radiation hazard from direct downward-going neutron radiation but may also produce a significant hazard from reflection of neutrons from the Martian surface, which will produce reflected neutron radiation penetrating upward into a Martian craft or habitat from the floor. [81]

Sources of neutrons for research. These include certain types of radioactive decay (spontaneous fission and neutron emission), and from certain nuclear reactions. Convenient nuclear reactions include tabletop reactions such as natural alpha and gamma bombardment of certain nuclides, often beryllium or deuterium, and induced nuclear fission, such as occurs in nuclear reactors. In addition, high-energy nuclear reactions (such as occur in cosmic radiation showers or accelerator collisions) also produce neutrons from disintegration of target nuclei. Small (tabletop) particle accelerators optimized to produce free neutrons in this way, are called neutron generators.

In practice, the most commonly used small laboratory sources of neutrons use radioactive decay to power neutron production. One noted neutron-producing radioisotope, californium-252 decays (half-life 2.65 years) by spontaneous fission 3% of the time with production of 3.7 neutrons per fission, and is used alone as a neutron source from this process. Nuclear reaction sources (that involve two materials) powered by radioisotopes use an alpha decay source plus a beryllium target, or else a source of high-energy gamma radiation from a source that undergoes beta decay followed by gamma decay, which produces photoneutrons on interaction of the high-energy gamma ray with ordinary stable beryllium, or else with the deuterium in heavy water. A popular source of the latter type is radioactive antimony-124 plus beryllium, a system with a half-life of 60.9 days, which can be constructed from natural antimony (which is 42.8% stable antimony-123) by activating it with neutrons in a nuclear reactor, then transported to where the neutron source is needed. [82]

Institut Laue-Langevin (ILL) in Grenoble, France - a major neutron research facility. Institut Laue-Langevin (ILL) in Grenoble, France.jpg
Institut Laue–Langevin (ILL) in Grenoble, France – a major neutron research facility.

Nuclear fission reactors naturally produce free neutrons; their role is to sustain the energy-producing chain reaction. The intense neutron radiation can also be used to produce various radioisotopes through the process of neutron activation, which is a type of neutron capture.

Experimental nuclear fusion reactors produce free neutrons as a waste product. However, it is these neutrons that possess most of the energy, and converting that energy to a useful form has proved a difficult engineering challenge. Fusion reactors that generate neutrons are likely to create radioactive waste, but the waste is composed of neutron-activated lighter isotopes, which have relatively short (50–100 years) decay periods as compared to typical half-lives of 10,000 years[ citation needed ] for fission waste, which is long due primarily to the long half-life of alpha-emitting transuranic actinides. [83]

Neutron beams and modification of beams after production

Free neutron beams are obtained from neutron sources by neutron transport. For access to intense neutron sources, researchers must go to a specialized neutron facility that operates a research reactor or a spallation source.

The neutron's lack of total electric charge makes it difficult to steer or accelerate them. Charged particles can be accelerated, decelerated, or deflected by electric or magnetic fields. These methods have little effect on neutrons. However, some effects may be attained by use of inhomogeneous magnetic fields because of the neutron's magnetic moment. Neutrons can be controlled by methods that include moderation, reflection, and velocity selection. Thermal neutrons can be polarized by transmission through magnetic materials in a method analogous to the Faraday effect for photons. Cold neutrons of wavelengths of 6–7 angstroms can be produced in beams of a high degree of polarization, by use of magnetic mirrors and magnetized interference filters. [84]

Applications

The neutron plays an important role in many nuclear reactions. For example, neutron capture often results in neutron activation, inducing radioactivity. In particular, knowledge of neutrons and their behavior has been important in the development of nuclear reactors and nuclear weapons. The fissioning of elements like uranium-235 and plutonium-239 is caused by their absorption of neutrons.

Cold, thermal, and hot neutron radiation is commonly employed in neutron scattering facilities, where the radiation is used in a similar way one uses X-rays for the analysis of condensed matter. Neutrons are complementary to the latter in terms of atomic contrasts by different scattering cross sections; sensitivity to magnetism; energy range for inelastic neutron spectroscopy; and deep penetration into matter.

The development of "neutron lenses" based on total internal reflection within hollow glass capillary tubes or by reflection from dimpled aluminum plates has driven ongoing research into neutron microscopy and neutron/gamma ray tomography. [85] [86] [87]

A major use of neutrons is to excite delayed and prompt gamma rays from elements in materials. This forms the basis of neutron activation analysis (NAA) and prompt gamma neutron activation analysis (PGNAA). NAA is most often used to analyze small samples of materials in a nuclear reactor whilst PGNAA is most often used to analyze subterranean rocks around bore holes and industrial bulk materials on conveyor belts.

Another use of neutron emitters is the detection of light nuclei, in particular the hydrogen found in water molecules. When a fast neutron collides with a light nucleus, it loses a large fraction of its energy. By measuring the rate at which slow neutrons return to the probe after reflecting off of hydrogen nuclei, a neutron probe may determine the water content in soil.

Medical therapies

Because neutron radiation is both penetrating and ionizing, it can be exploited for medical treatments. Neutron radiation can have the unfortunate side-effect of leaving the affected area radioactive, however. Neutron tomography is therefore not a viable medical application.

Fast neutron therapy utilizes high-energy neutrons typically greater than 20 MeV to treat cancer. Radiation therapy of cancers is based upon the biological response of cells to ionizing radiation. If radiation is delivered in small sessions to damage cancerous areas, normal tissue will have time to repair itself, while tumor cells often cannot. [88] Neutron radiation can deliver energy to a cancerous region at a rate an order of magnitude larger than gamma radiation. [89]

Beams of low-energy neutrons are used in boron capture therapy to treat cancer. In boron capture therapy, the patient is given a drug that contains boron and that preferentially accumulates in the tumor to be targeted. The tumor is then bombarded with very low-energy neutrons (although often higher than thermal energy) which are captured by the boron-10 isotope in the boron, which produces an excited state of boron-11 that then decays to produce lithium-7 and an alpha particle that have sufficient energy to kill the malignant cell, but insufficient range to damage nearby cells. For such a therapy to be applied to the treatment of cancer, a neutron source having an intensity of the order of a thousand million (109) neutrons per second per cm2 is preferred. Such fluxes require a research nuclear reactor.

Protection

Exposure to free neutrons can be hazardous, since the interaction of neutrons with molecules in the body can cause disruption to molecules and atoms, and can also cause reactions that give rise to other forms of radiation (such as protons). The normal precautions of radiation protection apply: Avoid exposure, stay as far from the source as possible, and keep exposure time to a minimum. Some particular thought must be given to how to protect from neutron exposure, however. For other types of radiation, e.g., alpha particles, beta particles, or gamma rays, material of a high atomic number and with high density make for good shielding; frequently, lead is used. However, this approach will not work with neutrons, since the absorption of neutrons does not increase straightforwardly with atomic number, as it does with alpha, beta, and gamma radiation. Instead one needs to look at the particular interactions neutrons have with matter (see the section on detection above). For example, hydrogen-rich materials are often used to shield against neutrons, since ordinary hydrogen both scatters and slows neutrons. This often means that simple concrete blocks or even paraffin-loaded plastic blocks afford better protection from neutrons than do far more dense materials. After slowing, neutrons may then be absorbed with an isotope that has high affinity for slow neutrons without causing secondary capture radiation, such as lithium-6.

Hydrogen-rich ordinary water affects neutron absorption in nuclear fission reactors: Usually, neutrons are so strongly absorbed by normal water that fuel enrichment with fissionable isotope is required.[ clarification needed ] The deuterium in heavy water has a very much lower absorption affinity for neutrons than does protium (normal light hydrogen). Deuterium is, therefore, used in CANDU-type reactors, in order to slow (moderate) neutron velocity, to increase the probability of nuclear fission compared to neutron capture.

Neutron temperature

Thermal neutrons

A thermal neutron is a free neutron that is Boltzmann distributed with kT= 0.0253  eV (4.0×10−21  J ) at room temperature. This gives characteristic (not average, or median) speed of 2.2 km/s. The name 'thermal' comes from their energy being that of the room temperature gas or material they are permeating. (see kinetic theory for energies and speeds of molecules). After a number of collisions (often in the range of 10–20) with nuclei, neutrons arrive at this energy level, provided that they are not absorbed.

In many substances, thermal neutron reactions show a much larger effective cross-section than reactions involving faster neutrons, and thermal neutrons can therefore be absorbed more readily (i.e., with higher probability) by any atomic nuclei that they collide with, creating a heavier – and often unstableisotope of the chemical element as a result.

Most fission reactors use a neutron moderator to slow down, or thermalize the neutrons that are emitted by nuclear fission so that they are more easily captured, causing further fission. Others, called fast breeder reactors, use fission energy neutrons directly.

Cold neutrons

Cold neutrons are thermal neutrons that have been equilibrated in a very cold substance such as liquid deuterium. Such a cold source is placed in the moderator of a research reactor or spallation source. Cold neutrons are particularly valuable for neutron scattering experiments.[ citation needed ]

Cold neutron source providing neutrons at about the temperature of liquid hydrogen Cold Neutron Source.jpg
Cold neutron source providing neutrons at about the temperature of liquid hydrogen

Ultracold neutrons

Ultracold neutrons are produced by elastically scattering cold neutrons in substances with a temperature of a few kelvins, such as solid deuterium or superfluid helium. An alternative production method is the mechanical deceleration of cold neutrons.

Fission energy neutrons

A fast neutron is a free neutron with a kinetic energy level close to 1  MeV (1.6×10−13  J ), hence a speed of ~14000 km/s (~5% of the speed of light). They are named fission energy or fast neutrons to distinguish them from lower-energy thermal neutrons, and high-energy neutrons produced in cosmic showers or accelerators. Fast neutrons are produced by nuclear processes such as nuclear fission. Neutrons produced in fission, as noted above, have a Maxwell–Boltzmann distribution of kinetic energies from 0 to ~14 MeV, a mean energy of 2 MeV (for U-235 fission neutrons), and a mode of only 0.75 MeV, which means that more than half of them do not qualify as fast (and thus have almost no chance of initiating fission in fertile materials, such as U-238 and Th-232).

Fast neutrons can be made into thermal neutrons via a process called moderation. This is done with a neutron moderator. In reactors, typically heavy water, light water, or graphite are used to moderate neutrons.

Fusion neutrons

The fusion reaction rate increases rapidly with temperature until it maximizes and then gradually drops off. The DT rate peaks at a lower temperature (about 70 keV, or 800 million kelvins) and at a higher value than other reactions commonly considered for fusion energy. Fusion rxnrate.svg
The fusion reaction rate increases rapidly with temperature until it maximizes and then gradually drops off. The DT rate peaks at a lower temperature (about 70 keV, or 800 million kelvins) and at a higher value than other reactions commonly considered for fusion energy.

D–T (deuteriumtritium) fusion is the fusion reaction that produces the most energetic neutrons, with 14.1 MeV of kinetic energy and traveling at 17% of the speed of light. D–T fusion is also the easiest fusion reaction to ignite, reaching near-peak rates even when the deuterium and tritium nuclei have only a thousandth as much kinetic energy as the 14.1 MeV that will be produced.

14.1 MeV neutrons have about 10 times as much energy as fission neutrons, and are very effective at fissioning even non-fissile heavy nuclei, and these high-energy fissions produce more neutrons on average than fissions by lower-energy neutrons. This makes D–T fusion neutron sources such as proposed tokamak power reactors useful for transmutation of transuranic waste. 14.1 MeV neutrons can also produce neutrons by knocking them loose from nuclei.

On the other hand, these very high-energy neutrons are less likely to simply be captured without causing fission or spallation. For these reasons, nuclear weapon design extensively utilizes D–T fusion 14.1 MeV neutrons to cause more fission. Fusion neutrons are able to cause fission in ordinarily non-fissile materials, such as depleted uranium (uranium-238), and these materials have been used in the jackets of thermonuclear weapons. Fusion neutrons also can cause fission in substances that are unsuitable or difficult to make into primary fission bombs, such as reactor grade plutonium. This physical fact thus causes ordinary non-weapons grade materials to become of concern in certain nuclear proliferation discussions and treaties.

Other fusion reactions produce much less energetic neutrons. D–D fusion produces a 2.45 MeV neutron and helium-3 half of the time, and produces tritium and a proton but no neutron the rest of the time. D–3He fusion produces no neutron.

Intermediate-energy neutrons

Transmutation flow in light water reactor, which is a thermal-spectrum reactor Sasahara.svg
Transmutation flow in light water reactor, which is a thermal-spectrum reactor

A fission energy neutron that has slowed down but not yet reached thermal energies is called an epithermal neutron.

Cross sections for both capture and fission reactions often have multiple resonance peaks at specific energies in the epithermal energy range. These are of less significance in a fast neutron reactor, where most neutrons are absorbed before slowing down to this range, or in a well-moderated thermal reactor, where epithermal neutrons interact mostly with moderator nuclei, not with either fissile or fertile actinide nuclides. However, in a partially moderated reactor with more interactions of epithermal neutrons with heavy metal nuclei, there are greater possibilities for transient changes in reactivity that might make reactor control more difficult.

Ratios of capture reactions to fission reactions are also worse (more captures without fission) in most nuclear fuels such as plutonium-239, making epithermal-spectrum reactors using these fuels less desirable, as captures not only waste the one neutron captured but also usually result in a nuclide that is not fissile with thermal or epithermal neutrons, though still fissionable with fast neutrons. The exception is uranium-233 of the thorium cycle, which has good capture-fission ratios at all neutron energies.

High-energy neutrons

High-energy neutrons have much more energy than fission energy neutrons and are generated as secondary particles by particle accelerators or in the atmosphere from cosmic rays. These high-energy neutrons are extremely efficient at ionization and far more likely to cause cell death than X-rays or protons. [90] [91]

See also

Neutron sources

Processes involving neutrons

Related Research Articles

Alpha decay emission of alpha particles by a decaying radioactive atom

Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle and thereby transforms or 'decays' into a different atomic nucleus, with a mass number that is reduced by four and an atomic number that is reduced by two. An alpha particle is identical to the nucleus of a helium-4 atom, which consists of two protons and two neutrons. It has a charge of +2 e and a mass of 4 u. For example, uranium-238 decays to form thorium-234. Alpha particles have a charge +2 e, but as a nuclear equation describes a nuclear reaction without considering the electrons – a convention that does not imply that the nuclei necessarily occur in neutral atoms – the charge is not usually shown.

Beta decay decay where electrons (β-, beta minus) or positrons (β+, positron emission) are emitted

In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which a beta ray is emitted from an atomic nucleus. For example, beta decay of a neutron transforms it into a proton by the emission of an electron accompanied by an antineutrino, or conversely a proton is converted into a neutron by the emission of a positron with a neutrino, thus changing the nuclide type. Neither the beta particle nor its associated (anti-)neutrino exist within the nucleus prior to beta decay, but are created in the decay process. By this process, unstable atoms obtain a more stable ratio of protons to neutrons. The probability of a nuclide decaying due to beta and other forms of decay is determined by its nuclear binding energy. The binding energies of all existing nuclides form what is called the nuclear band or valley of stability. For either electron or positron emission to be energetically possible, the energy release or Q value must be positive.

Nuclear physics field of physics that deals with the structure and behavior of atomic nuclei

Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions. Other forms of nuclear matter are also studied. Nuclear physics should not be confused with atomic physics, which studies the atom as a whole, including its electrons.

Particle radiation is the radiation of energy by means of fast-moving subatomic particles. Particle radiation is referred to as a particle beam if the particles are all moving in the same direction, similar to a light beam.

Beta particle ionizing radiation

A beta particle, also called beta ray or beta radiation, is a high-energy, high-speed electron or positron emitted by the radioactive decay of an atomic nucleus during the process of beta decay. There are two forms of beta decay, β decay and β+ decay, which produce electrons and positrons respectively.

Nucleosynthesis is the process that creates new atomic nuclei from pre-existing nucleons, primarily protons and neutrons. The first nuclei were formed about three minutes after the Big Bang, through the process called Big Bang nucleosynthesis. Seventeen minutes later the universe had cooled to a point at which these processes ended, so only the fastest and simplest reactions occurred, leaving our universe containing about 75% hydrogen, 24% helium, and traces of other elements such as lithium and the hydrogen isotope deuterium. The universe still has approximately the same composition today.

Island of stability set of yet-undiscovered isotopes of super-heavy elements theorized to be much more stable than other

In nuclear physics, the island of stability is the prediction that a set of superheavy nuclides with magic numbers of protons and neutrons will temporarily reverse the trend of decreasing stability in elements heavier than uranium. Various predictions have been made regarding the exact location of the island of stability, though it is generally thought to center near copernicium and flerovium isotopes approaching the predicted closed shell at N = 184. It is thought that the closed shell will confer additional stability towards fission, while also leading to longer half-lives towards alpha decay. While these effects are expected to be greatest near Z = 114 and N = 184, the region of increased stability is expected to encompass several neighboring elements, and there may also be additional islands of stability around heavier doubly magic nuclei. Estimates of the stability of the elements on the island are usually around a half-life of minutes or days; however, some estimates predict half-lives of millions of years.

Radioactive decay Process by which an unstable atom emits radiation

Radioactive decay is a condition and natural process in which subatomic particles within the atomic nucleus of a radioisotope get decayed due to the instability of the atom. This produces ionized radiation in the form of alpha particles, beta particles with neutrino or only a neutrino in the case of electron capture, or gamma rays. The rate of disintegration can be measured on a logarithmic scale. A material containing such unstable nuclei is considered radioactive. Certain highly excited short-lived nuclear states can decay through neutron emission, or more rarely, proton emission.

Nuclear reaction process in which two nuclei collide to produce one or more nuclides

In nuclear physics and nuclear chemistry, a nuclear reaction is semantically considered to be the process in which two nuclei, or else a nucleus of an atom and a subatomic particle from outside the atom, collide to produce one or more nuclides that are different from the nuclide(s) that began the process. Thus, a nuclear reaction must cause a transformation of at least one nuclide to another. If a nucleus interacts with another nucleus or particle and they then separate without changing the nature of any nuclide, the process is simply referred to as a type of nuclear scattering, rather than a nuclear reaction.

Neutron capture Atomic nuclear process

Neutron capture is a nuclear reaction in which an atomic nucleus and one or more neutrons collide and merge to form a heavier nucleus. Since neutrons have no electric charge, they can enter a nucleus more easily than positively charged protons, which are repelled electrostatically.

Double electron capture is a decay mode of atomic nucleus. For a nuclide with number of nucleons A and atomic number Z, double electron capture is only possible if the mass of the nuclide of is lower.

Caesium (55Cs) has 40 known isotopes, making it, along with barium and mercury, the element with the most isotopes. The atomic masses of these isotopes range from 112 to 151. Only one isotope, 133Cs, is stable. The longest-lived radioisotopes are 135Cs with a half-life of 2.3 million years, 137Cs with a half-life of 30.1671 years and 134Cs with a half-life of 2.0652 years. All other isotopes have half-lives less than 2 weeks, most under an hour.

Technetium (43Tc) is the first of the two elements lighter than bismuth that have no stable isotopes; the other such element is promethium. It is primarily artificial, with only trace quantities existing in nature produced by spontaneous fission or neutron capture by molybdenum. The first isotopes to be synthesized were 97Tc and 99Tc in 1936, the first artificial element to be produced. The most stable radioisotopes are 97Tc, 98Tc and 99Tc.

Nuclear binding energy energy required to split a nucleus of an atom into its component parts.

Nuclear binding energy is the minimum energy that would be required to disassemble the nucleus of an atom into its component parts. These component parts are neutrons and protons, which are collectively called nucleons. The binding is always a positive number, as we need to spend energy in moving these nucleons, attracted to each other by the strong nuclear force, away from each other. The mass of an atomic nucleus is less than the sum of the individual masses of the free constituent protons and neutrons, according to Einstein's equation E=mc2. This 'missing mass' is known as the mass defect, and represents the energy that was released when the nucleus was formed.

Valley of stability

In nuclear physics, the valley of stability is a characterization of the stability of nuclides to radioactivity based on their binding energy. Nuclides are composed of protons and neutrons. The shape of the valley refers to the profile of binding energy as a function of the numbers of neutrons and protons, with the lowest part of the valley corresponding to the region of most stable nuclei. The line of stable nuclides down the center of the valley of stability is known as the line of beta stability. The sides of the valley correspond to increasing instability to beta decay. The decay of a nuclide becomes more energetically favorable the further it is from the line of beta stability. The boundaries of the valley correspond to the nuclear drip lines, where nuclides become so unstable they emit single protons or single neutrons. Regions of instability within the valley at high atomic number also include radioactive decay by alpha radiation or spontaneous fission. The shape of the valley is roughly an elongated paraboloid corresponding to the nuclide binding energies as a function of neutron and atomic numbers.

Alpha particle helium-4 nucleus; a particles consisting of two protons and two neutrons bound together

Alpha particles, also called alpha ray or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay, but may also be produced in other ways. Alpha particles are named after the first letter in the Greek alphabet, α. The symbol for the alpha particle is α or α2+. Because they are identical to helium nuclei, they are also sometimes written as He2+
or 4
2
He2+
indicating a helium ion with a +2 charge. If the ion gains electrons from its environment, the alpha particle becomes a normal helium atom 4
2
He
.

Discovery of the neutron

The discovery of the neutron and its properties was central to the extraordinary developments in atomic physics in the first half of the 20th century. Early in the century, Ernest Rutherford developed a crude model of the atom, based on the gold foil experiment of Hans Geiger and Ernest Marsden. In this model, atoms had their mass and positive electric charge concentrated in a very small nucleus. By 1920 chemical isotopes had been discovered, the atomic masses had been determined to be (approximately) integer multiples of the mass of the hydrogen atom, and the atomic number had been identified as the charge on the nucleus. Throughout the 1920s, the nucleus was viewed as composed of combinations of protons and electrons, the two elementary particles known at the time, but that model presented several experimental and theoretical contradictions.

References

  1. Ernest Rutherford. Chemed.chem.purdue.edu. Retrieved on 2012-08-16.
  2. 1 2 1935 Nobel Prize in Physics. Nobelprize.org. Retrieved on 2012-08-16.
  3. 1 2 3 4 5 6 7 8 Mohr, P.J.; Taylor, B.N. and Newell, D.B. (2014), "The 2014 CODATA Recommended Values of the Fundamental Physical Constants" (Web Version 7.0). The database was developed by J. Baker, M. Douma, and S. Kotochigova. (2014). National Institute of Standards and Technology, Gaithersburg, Maryland 20899.
  4. 1 2 Olive, K.A.; (Particle Data Group); et al. (2014). "Review of Particle Physics" (PDF). Chinese Physics C . 38 (9): 090001. Bibcode:2014ChPhC..38i0001O. doi:10.1088/1674-1137/38/9/090001.
  5. Thomas, A.W.; Weise, W. (2001), The Structure of the Nucleon, Wiley-WCH, Berlin, ISBN   978-3-527-40297-7
  6. 1 2 Chadwick, James (1932). "Possible Existence of a Neutron". Nature . 129 (3252): 312. Bibcode:1932Natur.129Q.312C. doi:10.1038/129312a0.
  7. Hahn, O. & Strassmann, F. (1939). "Über den Nachweis und das Verhalten der bei der Bestrahlung des Urans mittels Neutronen entstehenden Erdalkalimetalle" [On the detection and characteristics of the alkaline earth metals formed by irradiation of uranium with neutrons]. Die Naturwissenschaften . 27 (1): 11–15. Bibcode:1939NW.....27...11H. doi:10.1007/BF01488241.
  8. 1 2 3 Glasstone, Samuel; Dolan, Philip J., eds. (1977), The Effects of Nuclear Weapons (3rd ed.), U.S. Dept. of Defense and Energy Research and Development Administration, U.S. Government Printing Office, ISBN   978-1-60322-016-3
  9. 1 2 Carson, M.J.; et al. (2004). "Neutron background in large-scale xenon detectors for dark matter searches". Astroparticle Physics . 21 (6): 667–687. arXiv: hep-ex/0404042 . Bibcode:2004APh....21..667C. doi:10.1016/j.astropartphys.2004.05.001.
  10. Nudat 2. Nndc.bnl.gov. Retrieved on 2010-12-04.
  11. Povh, B.; Rith, K.; Scholz, C.; Zetsche, F. (2002). Particles and Nuclei: An Introduction to the Physical Concepts. Berlin: Springer-Verlag. p. 73. ISBN   978-3-540-43823-6.
  12. Basdevant, J.-L.; Rich, J.; Spiro, M. (2005). Fundamentals in Nuclear Physics. Springer. p. 155. ISBN   978-0-387-01672-6.
  13. Tipler, Paul Allen; Llewellyn, Ralph A. (2002). Modern Physics (4 ed.). Macmillan. p. 310. ISBN   978-0-7167-4345-3.
  14. 1 2 3 Nakamura, K (2010). "Review of Particle Physics". Journal of Physics G . 37 (7A): 075021. Bibcode:2010JPhG...37g5021N. doi:10.1088/0954-3899/37/7A/075021. PDF with 2011 partial update for the 2012 edition The exact value of the mean lifetime is still uncertain, due to conflicting results from experiments. The Particle Data Group reports values up to six seconds apart (more than four standard deviations), commenting that "our 2006, 2008, and 2010 Reviews stayed with 885.7±0.8 s; but we noted that in light of SEREBROV 05 our value should be regarded as suspect until further experiments clarified matters. Since our 2010 Review, PICHLMAIER 10 has obtained a mean life of 880.7±1.8 s, closer to the value of SEREBROV 05 than to our average. And SEREBROV 10B[...] claims their values should be lowered by about 6 s, which would bring them into line with the two lower values. However, those reevaluations have not received an enthusiastic response from the experimenters in question; and in any case the Particle Data Group would have to await published changes (by those experimenters) of published values. At this point, we can think of nothing better to do than to average the seven best but discordant measurements, getting 881.5±1.5s. Note that the error includes a scale factor of 2.7. This is a jump of 4.2 old (and 2.8 new) standard deviations. This state of affairs is a particularly unhappy one, because the value is so important. We again call upon the experimenters to clear this up."
  15. Adair, R.K. (1989). The Great Design: Particles, Fields, and Creation. Oxford University Press. p. 214. Bibcode:1988gdpf.book.....A.
  16. Cottingham, W.N.; Greenwood, D.A. (1986). An Introduction to Nuclear Physics. Cambridge University Press. ISBN   9780521657334.
  17. 1 2 Rutherford, E. (1920). "Nuclear Constitution of Atoms". Proceedings of the Royal Society A . 97 (686): 374–400. Bibcode:1920RSPSA..97..374R. doi:10.1098/rspa.1920.0040.
  18. Pauli, Wolfgang; Hermann, A.; Meyenn, K.v; Weisskopff, V.F (1985). "Das Jahr 1932 Die Entdeckung des Neutrons". Wolfgang Pauli. Sources in the History of Mathematics and Physical Sciences. 6. pp. 105–144. doi:10.1007/978-3-540-78801-0_3. ISBN   978-3-540-13609-5.
  19. Hendry, John, ed. (1984). Cambridge Physics in the Thirties. Bristol: Adam Hilger. ISBN   978-0852747612.
  20. Feather, N. (1960). "A history of neutrons and nuclei. Part 1". Contemporary Physics . 1 (3): 191–203. Bibcode:1960ConPh...1..191F. doi:10.1080/00107516008202611.
  21. Brown, Laurie M. (1978). "The idea of the neutrino". Physics Today . 31 (9): 23–28. Bibcode:1978PhT....31i..23B. doi:10.1063/1.2995181.
  22. Friedlander G., Kennedy J.W. and Miller J.M. (1964) Nuclear and Radiochemistry (2nd edition), Wiley, pp. 22–23 and 38–39
  23. 1 2 Stuewer, Roger H. (1985). "Niels Bohr and Nuclear Physics". In French, A.P.; Kennedy, P.J. Niels Bohr: A Centenary Volume. Harvard University Press. pp. 197–220. ISBN   978-0674624160.
  24. Pais, Abraham (1986). Inward Bound. Oxford: Oxford University Press. p. 299. ISBN   978-0198519973.
  25. Klein, O. (1929). "Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac". Zeitschrift für Physik . 53 (3–4): 157–165. Bibcode:1929ZPhy...53..157K. doi:10.1007/BF01339716.
  26. Bothe, W.; Becker, H. (1930). "Künstliche Erregung von Kern-γ-Strahlen" [Artificial excitation of nuclear γ-radiation]. Zeitschrift für Physik . 66 (5–6): 289–306. Bibcode:1930ZPhy...66..289B. doi:10.1007/BF01390908.
  27. Becker, H.; Bothe, W. (1932). "Die in Bor und Beryllium erregten γ-Strahlen" [Γ-rays excited in boron and beryllium]. Zeitschrift für Physik . 76 (7–8): 421–438. Bibcode:1932ZPhy...76..421B. doi:10.1007/BF01336726.
  28. Joliot-Curie, Irène & Joliot, Frédéric (1932). "Émission de protons de grande vitesse par les substances hydrogénées sous l'influence des rayons γ très pénétrants" [Emission of high-speed protons by hydrogenated substances under the influence of very penetrating γ-rays]. Comptes Rendus . 194: 273.
  29. Brown, Andrew (1997). The Neutron and the Bomb: A Biography of Sir James Chadwick. Oxford University Press. ISBN   978-0-19-853992-6.
  30. "Atop the Physics Wave: Rutherford Back in Cambridge, 1919–1937". Rutherford's Nuclear World. American Institute of Physics. 2011–2014. Retrieved 19 August 2014.
  31. Chadwick, J. (1933). "Bakerian Lecture. The Neutron". Proceedings of the Royal Society A . 142 (846): 1–25. Bibcode:1933RSPSA.142....1C. doi:10.1098/rspa.1933.0152.
  32. Heisenberg, W. (1932). "Über den Bau der Atomkerne. I". Zeitschrift für Physik . 77 (1–2): 1–11. Bibcode:1932ZPhy...77....1H. doi:10.1007/BF01342433.
  33. Heisenberg, W. (1932). "Über den Bau der Atomkerne. II". Zeitschrift für Physik . 78 (3–4): 156–164. Bibcode:1932ZPhy...78..156H. doi:10.1007/BF01337585.
  34. Heisenberg, W. (1933). "Über den Bau der Atomkerne. III". Zeitschrift für Physik . 80 (9–10): 587–596. Bibcode:1933ZPhy...80..587H. doi:10.1007/BF01335696.
  35. Iwanenko, D. (1932). "The Neutron Hypothesis". Nature . 129 (3265): 798. Bibcode:1932Natur.129..798I. doi:10.1038/129798d0.
  36. Miller A.I. (1995) Early Quantum Electrodynamics: A Sourcebook, Cambridge University Press, Cambridge, ISBN   0521568919, pp. 84–88.
  37. Wilson, Fred L. (1968). "Fermi's Theory of Beta Decay". American Journal of Physics . 36 (12): 1150–1160. Bibcode:1968AmJPh..36.1150W. doi:10.1119/1.1974382.
  38. Chadwick, J.; Goldhaber, M. (1934). "A nuclear photo-effect: disintegration of the diplon by gamma rays". Nature . 134 (3381): 237–238. Bibcode:1934Natur.134..237C. doi:10.1038/134237a0.
  39. Chadwick, J.; Goldhaber, M. (1935). "A nuclear photoelectric effect". Proceedings of the Royal Society of London A . 151 (873): 479–493. Bibcode:1935RSPSA.151..479C. doi:10.1098/rspa.1935.0162.
  40. Cooper, Dan (1999). Enrico Fermi: And the Revolutions in Modern physics. New York: Oxford University Press. ISBN   978-0-19-511762-2. OCLC   39508200.
  41. Hahn, O. (1958). "The Discovery of Fission". Scientific American . 198 (2): 76–84. Bibcode:1958SciAm.198b..76H. doi:10.1038/scientificamerican0258-76.
  42. Rife, Patricia (1999). Lise Meitner and the dawn of the nuclear age. Basel, Switzerland: Birkhäuser. ISBN   978-0-8176-3732-3.
  43. Hahn, O.; Strassmann, F. (10 February 1939). "Proof of the Formation of Active Isotopes of Barium from Uranium and Thorium Irradiated with Neutrons; Proof of the Existence of More Active Fragments Produced by Uranium Fission". Die Naturwissenschaften . 27 (6): 89–95. Bibcode:1939NW.....27...89H. doi:10.1007/BF01488988.
  44. "The Nobel Prize in Chemistry 1944". Nobel Foundation . Retrieved 2007-12-17.
  45. Bernstein, Jeremy (2001). Hitler's uranium club: the secret recordings at Farm Hall. New York: Copernicus. p. 281. ISBN   978-0-387-95089-1.
  46. "The Nobel Prize in Chemistry 1944: Presentation Speech". Nobel Foundation. Retrieved 2008-01-03.
  47. Sir James Chadwick’s Discovery of Neutrons. ANS Nuclear Cafe. Retrieved on 2012-08-16.
  48. Particle Data Group Summary Data Table on Baryons. lbl.gov (2007). Retrieved on 2012-08-16.
  49. Basic Ideas and Concepts in Nuclear Physics: An Introductory Approach, Third Edition; K. Heyde Taylor & Francis 2004. Print ISBN   978-0-7503-0980-6 , 978-1-4200-5494-1. doi : 10.1201/9781420054941. full text
  50. Greene, GL; et al. (1986). "New determination of the deuteron binding energy and the neutron mass". Physical Review Letters . 56 (8): 819–822. Bibcode:1986PhRvL..56..819G. doi:10.1103/PhysRevLett.56.819. PMID   10033294.
  51. Byrne, J. Neutrons, Nuclei, and Matter, Dover Publications, Mineola, New York, 2011, ISBN   0486482383, pp. 18–19
  52. 1 2 Gell, Y.; Lichtenberg, D.B. (1969). "Quark model and the magnetic moments of proton and neutron". Il Nuovo Cimento A . Series 10. 61 (1): 27–40. Bibcode:1969NCimA..61...27G. doi:10.1007/BF02760010.
  53. Alvarez, L.W; Bloch, F. (1940). "A quantitative determination of the neutron magnetic moment in absolute nuclear magnetons". Physical Review . 57 (2): 111–122. Bibcode:1940PhRv...57..111A. doi:10.1103/physrev.57.111.
  54. 1 2 3 Perkins, Donald H. (1982). Introduction to High Energy Physics. Addison Wesley, Reading, Massachusetts. pp. 201–202. ISBN   978-0-201-05757-7.
  55. 1 2 Greenberg, O.W. (2009), "Color charge degree of freedom in particle physics", Compendium of Quantum Physics, Springer Berlin Heidelberg, pp. 109–111, arXiv: 0805.0289 , doi:10.1007/978-3-540-70626-7_32, ISBN   978-3-540-70622-9
  56. Beg, M.A.B.; Lee, B.W.; Pais, A. (1964). "SU(6) and electromagnetic interactions". Physical Review Letters . 13 (16): 514–517, erratum 650. Bibcode:1964PhRvL..13..514B. doi:10.1103/physrevlett.13.514.
  57. Sakita, B. (1964). "Electromagnetic properties of baryons in the supermultiplet scheme of elementary particles". Physical Review Letters . 13 (21): 643–646. Bibcode:1964PhRvL..13..643S. doi:10.1103/physrevlett.13.643.
  58. 1 2 Cho, Adrian (2 April 2010). "Mass of the Common Quark Finally Nailed Down". Science. American Association for the Advancement of Science. Retrieved 27 September 2014.
  59. Wilczek, F. (2003). "The Origin of Mass" (PDF). MIT Physics Annual : 24–35. Retrieved May 8, 2015.
  60. Ji, Xiangdong (1995). "A QCD Analysis of the Mass Structure of the Nucleon". Physical Review Letters . 74 (7): 1071–1074. arXiv: hep-ph/9410274 . Bibcode:1995PhRvL..74.1071J. doi:10.1103/PhysRevLett.74.1071. PMID   10058927.
  61. Martinelli, G.; Parisi, G.; Petronzio, R.; Rapuano, F. (1982). "The proton and neutron magnetic moments in lattice QCD". Physics Letters B . 116 (6): 434–436. Bibcode:1982PhLB..116..434M. doi:10.1016/0370-2693(82)90162-9 . Retrieved May 8, 2015.
  62. Kincade, Kathy (2 February 2015). "Pinpointing the magnetic moments of nuclear matter". Phys.org . Retrieved May 8, 2015.
  63. 1 2 J. Byrne (2011). Neutrons, Nuclei and Matter: An Exploration of the Physics of Slow Neutrons. Mineola, New York: Dover Publications. pp. 28–31. ISBN   978-0486482385.
  64. Hughes, D.J.; Burgy, M.T. (1949). "Reflection and polarization of neutrons by magnetized mirrors" (PDF). Physical Review . 76 (9): 1413–1414. Bibcode:1949PhRv...76.1413H. doi:10.1103/PhysRev.76.1413.
  65. Sherwood, J.E.; Stephenson, T.E.; Bernstein, S. (1954). "Stern-Gerlach experiment on polarized neutrons". Physical Review . 96 (6): 1546–1548. Bibcode:1954PhRv...96.1546S. doi:10.1103/PhysRev.96.1546.
  66. Miller, G.A. (2007). "Charge Densities of the Neutron and Proton". Physical Review Letters . 99 (11): 112001. arXiv: 0705.2409 . Bibcode:2007PhRvL..99k2001M. doi:10.1103/PhysRevLett.99.112001. PMID   17930428.
  67. "Pear-shaped particles probe big-bang mystery" (Press release). University of Sussex. 20 February 2006. Retrieved 2009-12-14.
  68. A cryogenic experiment to search for the EDM of the neutron. Hepwww.rl.ac.uk. Retrieved on 2012-08-16.
  69. Search for the neutron electric dipole moment: nEDM. Nedm.web.psi.ch (2001-09-12). Retrieved on 2012-08-16.
  70. US nEDM ORNL experiment public page. Retrieved on 2017-02-08.
  71. SNS Neutron EDM Experiment Archived 2011-02-10 at the Wayback Machine . P25ext.lanl.gov. Retrieved on 2012-08-16.
  72. Measurement of the Neutron Electric Dipole Moment. Nrd.pnpi.spb.ru. Retrieved on 2012-08-16.
  73. Kisamori, K.; et al. (2016). "Candidate Resonant Tetraneutron State Populated by the He4(He8,Be8) Reaction". Physical Review Letters . 116 (5): 052501. Bibcode:2016PhRvL.116e2501K. doi:10.1103/PhysRevLett.116.052501. PMID   26894705.
  74. "Physicists find signs of four-neutron nucleus". 2016-02-24.
  75. Orr, Nigel (2016-02-03). "Can Four Neutrons Tango?". Physics . 9. Retrieved 2016-04-11.
  76. Spyrou, A.; et al. (2012). "First Observation of Ground State Dineutron Decay: 16Be". Physical Review Letters . 108 (10): 102501. Bibcode:2012PhRvL.108j2501S. doi:10.1103/PhysRevLett.108.102501. PMID   22463404.
  77. Llanes-Estrada, Felipe J.; Moreno Navarro, Gaspar (2012). "Cubic neutrons". Modern Physics Letters A . 27 (6): 1250033–1–1250033–7. arXiv: 1108.1859 . Bibcode:2012MPLA...2750033L. doi:10.1142/S0217732312500332.
  78. Knoll, Glenn F. (1979). "Ch. 14". Radiation Detection and Measurement. John Wiley & Sons. ISBN   978-0471495451.
  79. Köhn, C.; Ebert, U. (2015). "Calculation of beams of positrons, neutrons and protons associated with terrestrial gamma-ray flashes". Journal of Geophysical Research: Atmospheres . 23 (4): 1620–1635. Bibcode:2015JGRD..120.1620K. doi:10.1002/2014JD022229.
  80. Köhn, C.; Diniz, G.; Harakeh, Muhsin (2017). "Production mechanisms of leptons, photons, and hadrons and their possible feedback close to lightning leaders". Journal of Geophysical Research: Atmospheres . 122 (2): 1365–1383. Bibcode:2017JGRD..122.1365K. doi:10.1002/2016JD025445. PMC   5349290 . PMID   28357174.
  81. Clowdsley, MS; Wilson, JW; Kim, MH; Singleterry, RC; Tripathi, RK; Heinbockel, JH; Badavi, FF; Shinn, JL (2001). "Neutron Environments on the Martian Surface" (PDF). Physica Medica . 17 (Suppl 1): 94–96. PMID   11770546. Archived from the original (PDF) on 2005-02-25.
  82. Byrne, J. Neutrons, Nuclei, and Matter, Dover Publications, Mineola, New York, 2011, ISBN   0486482383, pp. 32–33.
  83. Science/Nature |Q&A: Nuclear fusion reactor. BBC News (2006-02-06). Retrieved on 2010-12-04.
  84. Byrne, J. Neutrons, Nuclei, and Matter, Dover Publications, Mineola, New York, 2011, ISBN   0486482383, p. 453.
  85. Kumakhov, M.A.; Sharov, V.A. (1992). "A neutron lens". Nature . 357 (6377): 390–391. Bibcode:1992Natur.357..390K. doi:10.1038/357390a0.
  86. Physorg.com, "New Way of 'Seeing': A 'Neutron Microscope'". Physorg.com (2004-07-30). Retrieved on 2012-08-16.
  87. "NASA Develops a Nugget to Search for Life in Space". NASA.gov (2007-11-30). Retrieved on 2012-08-16.
  88. Hall EJ (2000). Radiobiology for the Radiologist. Lippincott Williams & Wilkins; 5th edition
  89. Johns HE and Cunningham JR (1978). The Physics of Radiology. Charles C Thomas 3rd edition
  90. Freeman, Tami (May 23, 2008). "Facing up to secondary neutrons". Medical Physics Web. Archived from the original on 2010-12-20. Retrieved 2011-02-08.
  91. Heilbronn, L.; Nakamura, T; Iwata, Y; Kurosawa, T; Iwase, H; Townsend, LW (2005). "Expand+Overview of secondary neutron production relevant to shielding in space". Radiation Protection Dosimetry . 116 (1–4): 140–143. doi:10.1093/rpd/nci033. PMID   16604615.

Further reading