A pinch (or: Bennett pinch [2] (after Willard Harrison Bennett), electromagnetic pinch, [3] magnetic pinch, [4] pinch effect, [5] or plasma pinch. [6] ) is the compression of an electrically conducting filament by magnetic forces, or a device that does such. The conductor is usually a plasma, but could also be a solid or liquid metal. Pinches were the first type of device used for experiments in controlled nuclear fusion power. [7]
Pinches occur naturally in electrical discharges such as lightning bolts, [8] planetary auroras, [9] current sheets, [10] and solar flares. [11]
Pinches exist in nature and in laboratories. Pinches differ in their geometry and operating forces. [12] These include:
Pinches may become unstable. [22] They radiate energy across the whole electromagnetic spectrum including radio waves, microwaves, infrared, x-rays, [23] gamma rays, [24] synchrotron radiation, [25] and visible light. They also produce neutrons, as a product of fusion. [26]
Pinches are used to generate X-rays and the intense magnetic fields generated are used in electromagnetic forming of metals. They also have applications in particle beams [27] including particle beam weapons, [28] astrophysics studies [29] and it has been proposed to use them in space propulsion. [30] A number of large pinch machines have been built to study fusion power; here are several:
Many high-voltage electronics enthusiasts make their own crude electromagnetic forming devices. [32] [33] [34] They use pulsed power techniques to produce a theta pinch able to crush an aluminium soft drink can using the Lorentz forces created when large currents are induced in the can by the strong magnetic field of the primary coil. [35] [36]
An electromagnetic aluminium can crusher consists of four main components: a high-voltage DC power supply, which provides a source of electrical energy, a large energy discharge capacitor to accumulate the electrical energy, a high voltage switch or spark gap, and a robust coil (capable of surviving high magnetic pressure) through which the stored electrical energy can be quickly discharged in order to generate a correspondingly strong pinching magnetic field (see diagram below).
In practice, such a device is somewhat more sophisticated than the schematic diagram suggests, including electrical components that control the current in order to maximize the resulting pinch, and to ensure that the device works safely. For more details, see the notes. [37]
The first creation of a Z-pinch in the laboratory may have occurred in 1790 in Holland when Martinus van Marum created an explosion by discharging 100 Leyden jars into a wire. [39] The phenomenon was not understood until 1905, when Pollock and Barraclough [1] investigated a compressed and distorted length of copper tube from a lightning rod after it had been struck by lightning. Their analysis showed that the forces due to the interaction of the large current flow with its own magnetic field could have caused the compression and distortion. [40] A similar, and apparently independent, theoretical analysis of the pinch effect in liquid metals was published by Northrup in 1907. [41] The next major development was the publication in 1934 of an analysis of the radial pressure balance in a static Z-pinch by Bennett [42] (see the following section for details).
Thereafter, the experimental and theoretical progress on pinches was driven by fusion power research. In their article on the "Wire-array Z-pinch: a powerful x-ray source for ICF", M G Haines et al., wrote on the "Early history of Z-pinches". [43]
In 1958, the world's first controlled thermonuclear fusion experiment was accomplished using a theta-pinch machine named Scylla I at the Los Alamos National Laboratory. A cylinder full of deuterium was converted into a plasma and compressed to 15 million degrees Celsius under a theta-pinch effect. [7] Lastly, at Imperial College in 1960, led by R Latham, the Plateau–Rayleigh instability was shown, and its growth rate measured in a dynamic Z-pinch. [51]
In plasma physics three pinch geometries are commonly studied: the θ-pinch, the Z-pinch, and the screw pinch. These are cylindrically shaped. The cylinder is symmetric in the axial (z) direction and the azimuthal (θ) directions. The one-dimensional pinches are named for the direction the current travels.
The θ-pinch has a magnetic field directed in the z direction and a large diamagnetic current directed in the θ direction. Using Ampère's circuital law (discarding the displacement term)
Since B is only a function of r we can simplify this to
So J points in the θ direction.
Thus, the equilibrium condition () for the θ-pinch reads:
θ-pinches tend to be resistant to plasma instabilities; This is due in part to Alfvén's theorem (also known as the frozen-in flux theorem).
The Z-pinch has a magnetic field in the θ direction and a current J flowing in the z direction. Again, by electrostatic Ampère's law,
Thus, the equilibrium condition, , for the Z-pinch reads:
Although Z-pinches satisfy the MHD equilibrium condition, it is important to note that this is an unstable equilibrium, resulting in various instabilies such as the m = 0 instability ('sausage'), m = 1 instability ('kink'), and various other higher order instabilities. [52]
The screw pinch is an effort to combine the stability aspects of the θ-pinch and the confinement aspects of the Z-pinch. Referring once again to Ampère's law,
But this time, the B field has a θ component and a z component
So this time J has a component in the z direction and a component in the θ direction.
Finally, the equilibrium condition () for the screw pinch reads:
The screw pinch might be produced in laser plasma by colliding optical vortices of ultrashort duration. [53] For this purpose optical vortices should be phase-conjugated. [54] The magnetic field distribution is given here again via Ampère's law:
A common problem with one-dimensional pinches is the end losses. Most of the motion of particles is along the magnetic field. With the θ-pinch and the screw-pinch, this leads particles out of the end of the machine very quickly, leading to a loss of mass and energy. Along with this problem, the Z-pinch has major stability problems. Though particles can be reflected to some extent with magnetic mirrors, even these allow many particles to pass. A common method of beating these end losses, is to bend the cylinder around into a torus. Unfortunately this breaks θ symmetry, as paths on the inner portion (inboard side) of the torus are shorter than similar paths on the outer portion (outboard side). Thus, a new theory is needed. This gives rise to the famous Grad–Shafranov equation. Numerical solutions to the Grad–Shafranov equation have also yielded some equilibria, most notably that of the reversed field pinch.
As of 2015 [update] , there is no coherent analytical theory for three-dimensional equilibria. The general approach to finding such equilibria is to solve the vacuum ideal MHD equations. Numerical solutions have yielded designs for stellarators. Some machines take advantage of simplification techniques such as helical symmetry (for example University of Wisconsin's Helically Symmetric eXperiment). However, for an arbitrary three-dimensional configuration, an equilibrium relation, similar to that of the 1-D configurations exists: [55]
Where κ is the curvature vector defined as:
with b the unit vector tangent to B.
Consider a cylindrical column of fully ionized quasineutral plasma, with an axial electric field, producing an axial current density, j, and associated azimuthal magnetic field, B. As the current flows through its own magnetic field, a pinch is generated with an inward radial force density of j x B. In a steady state with forces balancing:
where ∇p is the magnetic pressure gradient, and pe and pi are the electron and ion pressures, respectively. Then using Maxwell's equation and the ideal gas law , we derive:
where N is the number of electrons per unit length along the axis, Te and Ti are the electron and ion temperatures, I is the total beam current, and k is the Boltzmann constant.
The generalized Bennett relation considers a current-carrying magnetic-field-aligned cylindrical plasma pinch undergoing rotation at angular frequency ω. Along the axis of the plasma cylinder flows a current density jz, resulting in an azimuthal magnetic field Βφ. Originally derived by Witalis, [58] the generalized Bennett relation results in: [59]
The positive terms in the equation are expansional forces while the negative terms represent beam compressional forces.
The Carlqvist relation, published by Per Carlqvist in 1988, [12] is a specialization of the generalized Bennett relation (above), for the case that the kinetic pressure is much smaller at the border of the pinch than in the inner parts. It takes the form
and is applicable to many space plasmas.
The Carlqvist relation can be illustrated (see right), showing the total current (I) versus the number of particles per unit length (N) in a Bennett pinch. The chart illustrates four physically distinct regions. The plasma temperature is quite cold (Ti = Te = Tn = 20 K), containing mainly hydrogen with a mean particle mass 3×10−27 kg. The thermokinetic energy Wk >> πa2pk(a). The curves, ΔWBz show different amounts of excess magnetic energy per unit length due to the axial magnetic field Bz. The plasma is assumed to be non-rotational, and the kinetic pressure at the edges is much smaller than inside.
Chart regions: (a) In the top-left region, the pinching force dominates. (b) Towards the bottom, outward kinetic pressures balance inwards magnetic pressure, and the total pressure is constant. (c) To the right of the vertical line ΔWBz = 0, the magnetic pressures balances the gravitational pressure, and the pinching force is negligible. (d) To the left of the sloping curve ΔWBz = 0, the gravitational force is negligible. Note that the chart shows a special case of the Carlqvist relation, and if it is replaced by the more general Bennett relation, then the designated regions of the chart are not valid.
Carlqvist further notes that by using the relations above, and a derivative, it is possible to describe the Bennett pinch, the Jeans criterion (for gravitational instability, [60] in one and two dimensions), force-free magnetic fields, gravitationally balanced magnetic pressures, and continuous transitions between these states.
A fictionalized pinch-generating device was used in Ocean's Eleven , where it was used to disrupt Las Vegas's power grid just long enough for the characters to begin their heist. [61]
In physics, the cross section is a measure of the probability that a specific process will take place in a collision of two particles. For example, the Rutherford cross-section is a measure of probability that an alpha particle will be deflected by a given angle during an interaction with an atomic nucleus. Cross section is typically denoted σ (sigma) and is expressed in units of area, more specifically in barns. In a way, it can be thought of as the size of the object that the excitation must hit in order for the process to occur, but more exactly, it is a parameter of a stochastic process.
In particle physics, the electroweak interaction or electroweak force is the unified description of two of the four known fundamental interactions of nature: electromagnetism (electromagnetic interaction) and the weak interaction. Although these two forces appear very different at everyday low energies, the theory models them as two different aspects of the same force. Above the unification energy, on the order of 246 GeV, they would merge into a single force. Thus, if the temperature is high enough – approximately 1015 K – then the electromagnetic force and weak force merge into a combined electroweak force. During the quark epoch (shortly after the Big Bang), the electroweak force split into the electromagnetic and weak force. It is thought that the required temperature of 1015 K has not been seen widely throughout the universe since before the quark epoch, and currently the highest human-made temperature in thermal equilibrium is around 5.5×1012 K (from the Large Hadron Collider).
A magnetic field is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to the magnetic field. A permanent magnet's magnetic field pulls on ferromagnetic materials such as iron, and attracts or repels other magnets. In addition, a nonuniform magnetic field exerts minuscule forces on "nonmagnetic" materials by three other magnetic effects: paramagnetism, diamagnetism, and antiferromagnetism, although these forces are usually so small they can only be detected by laboratory equipment. Magnetic fields surround magnetized materials, electric currents, and electric fields varying in time. Since both strength and direction of a magnetic field may vary with location, it is described mathematically by a function assigning a vector to each point of space, called a vector field.
In physics and engineering, magnetohydrodynamics is a model of electrically conducting fluids that treats all interpenetrating particle species together as a single continuous medium. It is primarily concerned with the low-frequency, large-scale, magnetic behavior in plasmas and liquid metals and has applications in multiple fields including space physics, geophysics, astrophysics, and engineering.
In physics, specifically electromagnetism, the Biot–Savart law is an equation describing the magnetic field generated by a constant electric current. It relates the magnetic field to the magnitude, direction, length, and proximity of the electric current.
In electromagnetism, a magnetic dipole is the limit of either a closed loop of electric current or a pair of poles as the size of the source is reduced to zero while keeping the magnetic moment constant.
A solenoid is a type of electromagnet formed by a helical coil of wire whose length is substantially greater than its diameter, which generates a controlled magnetic field. The coil can produce a uniform magnetic field in a volume of space when an electric current is passed through it.
The Klein–Gordon equation is a relativistic wave equation, related to the Schrödinger equation. It is second-order in space and time and manifestly Lorentz-covariant. It is a differential equation version of the relativistic energy–momentum relation .
In particle, atomic and condensed matter physics, a Yukawa potential is a potential named after the Japanese physicist Hideki Yukawa. The potential is of the form:
In the Standard Model of particle physics, the Higgs mechanism is essential to explain the generation mechanism of the property "mass" for gauge bosons. Without the Higgs mechanism, all bosons (one of the two classes of particles, the other being fermions) would be considered massless, but measurements show that the W+, W−, and Z0 bosons actually have relatively large masses of around 80 GeV/c2. The Higgs field resolves this conundrum. The simplest description of the mechanism adds a quantum field (the Higgs field) which permeates all of space to the Standard Model. Below some extremely high temperature, the field causes spontaneous symmetry breaking during interactions. The breaking of symmetry triggers the Higgs mechanism, causing the bosons it interacts with to have mass. In the Standard Model, the phrase "Higgs mechanism" refers specifically to the generation of masses for the W±, and Z weak gauge bosons through electroweak symmetry breaking. The Large Hadron Collider at CERN announced results consistent with the Higgs particle on 14 March 2013, making it extremely likely that the field, or one like it, exists, and explaining how the Higgs mechanism takes place in nature. The view of the Higgs mechanism as involving spontaneous symmetry breaking of a gauge symmetry is technically incorrect since by Elitzur's theorem gauge symmetries can never be spontaneously broken. Rather, the Fröhlich–Morchio–Strocchi mechanism reformulates the Higgs mechanism in an entirely gauge invariant way, generally leading to the same results.
The Kerr–Newman metric describes the spacetime geometry around a mass which is electrically charged and rotating. It is a vacuum solution which generalizes the Kerr metric by additionally taking into account the energy of an electromagnetic field, making it the most general asymptotically flat and stationary solution of the Einstein–Maxwell equations in general relativity. As an electrovacuum solution, it only includes those charges associated with the magnetic field; it does not include any free electric charges.
The Grad–Shafranov equation is the equilibrium equation in ideal magnetohydrodynamics (MHD) for a two dimensional plasma, for example the axisymmetric toroidal plasma in a tokamak. This equation takes the same form as the Hicks equation from fluid dynamics. This equation is a two-dimensional, nonlinear, elliptic partial differential equation obtained from the reduction of the ideal MHD equations to two dimensions, often for the case of toroidal axisymmetry. Taking as the cylindrical coordinates, the flux function is governed by the equation,
In theoretical physics, the Weinberg–Witten (WW) theorem, proved by Steven Weinberg and Edward Witten, states that massless particles (either composite or elementary) with spin j > 1/2 cannot carry a Lorentz-covariant current, while massless particles with spin j > 1 cannot carry a Lorentz-covariant stress-energy. The theorem is usually interpreted to mean that the graviton (j = 2) cannot be a composite particle in a relativistic quantum field theory.
In physics, magnetic pressure is an energy density associated with a magnetic field. In SI units, the energy density of a magnetic field with strength can be expressed as
In mathematical physics, spacetime algebra (STA) is the application of Clifford algebra Cl1,3(R), or equivalently the geometric algebra G(M4) to physics. Spacetime algebra provides a "unified, coordinate-free formulation for all of relativistic physics, including the Dirac equation, Maxwell equation and General Relativity" and "reduces the mathematical divide between classical, quantum and relativistic physics."
Photon transport in biological tissue can be equivalently modeled numerically with Monte Carlo simulations or analytically by the radiative transfer equation (RTE). However, the RTE is difficult to solve without introducing approximations. A common approximation summarized here is the diffusion approximation. Overall, solutions to the diffusion equation for photon transport are more computationally efficient, but less accurate than Monte Carlo simulations.
Gyrokinetics is a theoretical framework to study plasma behavior on perpendicular spatial scales comparable to the gyroradius and frequencies much lower than the particle cyclotron frequencies. These particular scales have been experimentally shown to be appropriate for modeling plasma turbulence. The trajectory of charged particles in a magnetic field is a helix that winds around the field line. This trajectory can be decomposed into a relatively slow motion of the guiding center along the field line and a fast circular motion, called gyromotion. For most plasma behavior, this gyromotion is irrelevant. Averaging over this gyromotion reduces the equations to six dimensions rather than the seven. Because of this simplification, gyrokinetics governs the evolution of charged rings with a guiding center position, instead of gyrating charged particles.
For many paramagnetic materials, the magnetization of the material is directly proportional to an applied magnetic field, for sufficiently high temperatures and small fields. However, if the material is heated, this proportionality is reduced. For a fixed value of the field, the magnetic susceptibility is inversely proportional to temperature, that is
In plasma physics and magnetic confinement fusion, neoclassical transport or neoclassical diffusion is a theoretical description of collisional transport in toroidal plasmas, usually found in tokamaks or stellarators. It is a modification of classical diffusion adding in effects of non-uniform magnetic fields due to the toroidal geometry, which give rise to new diffusion effects.
Magnetic diffusion refers to the motion of magnetic fields, typically in the presence of a conducting solid or fluid such as a plasma. The motion of magnetic fields is described by the magnetic diffusion equation and is due primarily to induction and diffusion of magnetic fields through the material. The magnetic diffusion equation is a partial differential equation commonly used in physics. Understanding the phenomenon is essential to magnetohydrodynamics and has important consequences in astrophysics, geophysics, and electrical engineering.