Jeans instability

Last updated

The Jeans instability is a concept in astrophysics that describes an instability that leads to the gravitational collapse of a cloud of gas or dust. [1] It causes the collapse of interstellar gas clouds and subsequent star formation. It occurs when the internal gas pressure is not strong enough to prevent the gravitational collapse of a region filled with matter. [2] It is named after James Jeans.

Contents

For stability, the cloud must be in hydrostatic equilibrium, which in case of a spherical cloud translates to

where is the enclosed mass, is the pressure, is the density of the gas (at radius ), is the gravitational constant, and is the radius. The equilibrium is stable if small perturbations are damped and unstable if they are amplified. In general, the cloud is unstable if it is either very massive at a given temperature or very cool at a given mass; under these circumstances, the gas pressure gradient cannot overcome gravitational force, and the cloud will collapse, [3] is called Jeans collapse criterion.

The Jeans instability likely determines when star formation occurs in molecular clouds.

History

In 1720, Edmund Halley considered a universe without edges and pondered what would happen if the "system of the world", which exists within the universe, were finite or infinite. In the finite case, stars would gravitate towards the center, and if infinite, all the stars would be nearly in equilibrium and the stars would eventually reach a resting place. [4] Contrary to the writing of Halley, Isaac Newton, in a 1692/3 letter to Richard Bentley, wrote that it's hard to imagine that particles in an infinite space should be able to stand in such a configuration to result in a perfect equilibrium. [5] [6]

James Jeans extended the issue of gravitational stability to include pressure. In 1902, Jeans wrote, similarly to Halley, that a finite distribution of matter, assuming pressure does not prevent it, will collapse gravitationally towards its center. For an infinite distribution of matter, there are two possible scenarios. An exactly homogeneous distribution has no clear center of mass and no clear way to define a gravitational acceleration direction. For the other case, Jeans extends what Newton wrote about: Jeans demonstrated that small deviations from exact homogeneity lead to instabilities. [7]

Jeans mass

The Jeans mass is named after the British physicist Sir James Jeans, who considered the process of gravitational collapse within a gaseous cloud. He was able to show that, under appropriate conditions, a cloud, or part of one, would become unstable and begin to collapse when it lacked sufficient gaseous pressure support to balance the force of gravity. The cloud is stable for sufficiently small mass (at a given temperature and radius), but once this critical mass is exceeded, it will begin a process of runaway contraction until some other force can impede the collapse. He derived a formula for calculating this critical mass as a function of its density and temperature. The greater the mass of the cloud, the bigger its size, and the colder its temperature, the less stable it will be against gravitational collapse.

The approximate value of the Jeans mass may be derived through a simple physical argument. One begins with a spherical gaseous region of radius , mass , and with a gaseous sound speed . The gas is compressed slightly and it takes a time

for sound waves to cross the region and attempt to push back and re-establish the system in pressure balance. At the same time, gravity will attempt to contract the system even further, and will do so on a free-fall time

where is the universal gravitational constant, is the gas density within the region, and is the gas number density for mean mass per particle (μ = 3.9×10−24 g is appropriate for molecular hydrogen with 20% helium by number). When the sound-crossing time is less than the free-fall time, pressure forces temporarily overcome gravity, and the system returns to a stable equilibrium. However, when the free-fall time is less than the sound-crossing time, gravity overcomes pressure forces, and the region undergoes gravitational collapse. The condition for gravitational collapse is therefore

The resultant Jeans length is approximately

This length scale is known as the Jeans length. All scales larger than the Jeans length are unstable to gravitational collapse, whereas smaller scales are stable. The Jeans mass is just the mass contained in a sphere of radius ( is half the Jeans length):

The "Jeans swindle"

It was later pointed out by other astrophysicists including Binney and Tremaine [8] that the original analysis used by Jeans was flawed: in his formal analysis, although Jeans assumed that the collapsing region of the cloud was surrounded by an infinite, static medium, the influence of this static medium was completely ignored in Jeans' analysis. This flaw has come to be known as the "Jeans swindle". [9]

Remarkably, when using a more careful analysis taking into account other factors such as the expansion of the Universe fortuitously cancel out the apparent error in Jeans' analysis, and Jeans' equation is correct, even if its derivation might have been dubious. [9] [10]

Energy-based derivation

An alternative, arguably even simpler, derivation can be found using energy considerations. In the interstellar cloud, two opposing forces are at work. The gas pressure, caused by the thermal movement of the atoms or molecules comprising the cloud, tries to make the cloud expand, whereas gravitation tries to make the cloud collapse. The Jeans mass is the critical mass where both forces are in equilibrium with each other. In the following derivation numerical constants (such as π) and constants of nature (such as the gravitational constant) will be ignored. They will be reintroduced in the result.

Consider a homogenous spherical gas cloud with radius R. In order to compress this sphere to a radius RdR, work must be done against the gas pressure. During the compression, gravitational energy is released. When this energy equals the amount of work to be done on the gas, the critical mass is attained. Let M be the mass of the cloud, T the (absolute) temperature, n the particle density, and p the gas pressure. The work to be done equals p dV. Using the ideal gas law, according to which p = nT, one arrives at the following expression for the work:

The gravitational potential energy of a sphere with mass M and radius R is, apart from constants, given by the following expression:

The amount of energy released when the sphere contracts from radius R to radius RdR is obtained by differentiation this expression to R, so

The critical mass is attained as soon as the released gravitational energy is equal to the work done on the gas:

Next, the radius R must be expressed in terms of the particle density n and the mass M. This can be done using the relation

A little algebra leads to the following expression for the critical mass:

If during the derivation all constants are taken along, the resulting expression is

where k is the Boltzmann constant, G the gravitational constant, and m the mass of a particle comprising the gas. Assuming the cloud to consist of atomic hydrogen, the prefactor can be calculated. If we take the solar mass as the unit of mass, the result is

Jeans' length

Jeans' length is the critical radius of a cloud (typically a cloud of interstellar molecular gas and dust) where thermal energy, which causes the cloud to expand, is counteracted by gravity, which causes the cloud to collapse. It is named after the British astronomer Sir James Jeans, who concerned himself with the stability of spherical nebulae in the early 1900s. [7]

The formula for Jeans length is:

where is Boltzmann's constant, is the temperature of the cloud, is the mean molecular weight of the particles, is the gravitational constant, and is the cloud's mass density (i.e. the cloud's mass divided by the cloud's volume). [11] [12]

Perhaps the easiest way to conceptualize Jeans' length is in terms of a close approximation, in which we discard the factors and and in which we rephrase as . The formula for Jeans' length then becomes:

where is the radius of the cloud.

It follows immediately that when ; i.e., the cloud's radius is the Jeans' length when thermal energy per particle equals gravitational work per particle. At this critical length the cloud neither expands nor contracts. It is only when thermal energy is not equal to gravitational work that the cloud either expands and cools or contracts and warms, a process that continues until equilibrium is reached.

Jeans' length as oscillation wavelength

The Jeans' length is the oscillation wavelength (respectively, Jeans' wavenumber, ) below which stable oscillations rather than gravitational collapse will occur.

where G is the gravitational constant, is the sound speed, and is the enclosed mass density.

It is also the distance a sound wave would travel in the collapse time.

Fragmentation

Jeans instability can also give rise to fragmentation in certain conditions. To derive the condition for fragmentation an adiabatic process is assumed in an ideal gas and also a polytropic equation of state is taken. The derivation is shown below through a dimensional analysis:

For adiabatic processes,

For an ideal gas,

Polytropic equation of state,

Jeans mass,

Thus,

If the adiabatic index , the Jeans mass increases with increasing density, while if the Jeans mass decreases with increasing density. During gravitational collapse density always increases, [13] thus in the second case the Jeans mass will decrease during collapse, allowing smaller overdense regions to collapse, leading to fragmentation of the giant molecular cloud. For an ideal monatomic gas, the adiabatic index is 5/3. However, in astrophysical objects this value is usually close to 1 (for example, in partially ionized gas at temperatures low compared to the ionization energy). [14] More generally, the process is not really adiabatic but involves cooling by radiation that is much faster than the contraction, so that the process can be modeled by an adiabatic index as low as 1 (which corresponds to the polytropic index of an isothermal gas).[ citation needed ] So the second case is the rule rather than an exception in stars. This is the reason why stars usually form in clusters.

See also

Related Research Articles

<span class="mw-page-title-main">Equation of state</span> An equation describing the state of matter under a given set of physical conditions

In physics and chemistry, an equation of state is a thermodynamic equation relating state variables, which describe the state of matter under a given set of physical conditions, such as pressure, volume, temperature, or internal energy. Most modern equations of state are formulated in the Helmholtz free energy. Equations of state are useful in describing the properties of pure substances and mixtures in liquids, gases, and solid states as well as the state of matter in the interior of stars.

<span class="mw-page-title-main">Kinetic energy</span> Energy of a moving physical body

In physics, the kinetic energy of an object is the form of energy that it possesses due to its motion.

In statistical mechanics, the virial theorem provides a general equation that relates the average over time of the total kinetic energy of a stable system of discrete particles, bound by a conservative force, with that of the total potential energy of the system. Mathematically, the theorem states

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

<span class="mw-page-title-main">Gravitational binding energy</span> Minimum energy to remove a system from a gravitationally bound state

The gravitational binding energy of a system is the minimum energy which must be added to it in order for the system to cease being in a gravitationally bound state. A gravitationally bound system has a lower gravitational potential energy than the sum of the energies of its parts when these are completely separated—this is what keeps the system aggregated in accordance with the minimum total potential energy principle.

<span class="mw-page-title-main">Rankine–Hugoniot conditions</span> Concept in physics

The Rankine–Hugoniot conditions, also referred to as Rankine–Hugoniot jump conditions or Rankine–Hugoniot relations, describe the relationship between the states on both sides of a shock wave or a combustion wave in a one-dimensional flow in fluids or a one-dimensional deformation in solids. They are named in recognition of the work carried out by Scottish engineer and physicist William John Macquorn Rankine and French engineer Pierre Henri Hugoniot.

The Knudsen number (Kn) is a dimensionless number defined as the ratio of the molecular mean free path length to a representative physical length scale. This length scale could be, for example, the radius of a body in a fluid. The number is named after Danish physicist Martin Knudsen (1871–1949).

<span class="mw-page-title-main">Stellar dynamics</span>

Stellar dynamics is the branch of astrophysics which describes in a statistical way the collective motions of stars subject to their mutual gravity. The essential difference from celestial mechanics is that the number of body

<span class="mw-page-title-main">Kelvin–Helmholtz mechanism</span> Process of energy release of a contracting star or planet

The Kelvin–Helmholtz mechanism is an astronomical process that occurs when the surface of a star or a planet cools. The cooling causes the internal pressure to drop, and the star or planet shrinks as a result. This compression, in turn, heats the core of the star/planet. This mechanism is evident on Jupiter and Saturn and on brown dwarfs whose central temperatures are not high enough to undergo hydrogen fusion. It is estimated that Jupiter radiates more energy through this mechanism than it receives from the Sun, but Saturn might not. Jupiter has been estimated to shrink at a rate of approximately 1 mm/year by this process, corresponding to an internal flux of 7.485 W/m2.

In physics and astronomy, the Reissner–Nordström metric is a static solution to the Einstein–Maxwell field equations, which corresponds to the gravitational field of a charged, non-rotating, spherically symmetric body of mass M. The analogous solution for a charged, rotating body is given by the Kerr–Newman metric.

The virial expansion is a model of thermodynamic equations of state. This model expresses the pressure P of a gas in local equilibrium as a power series of the density. This equation may be represented in terms of the compressibility factor, , as

<span class="mw-page-title-main">Radiation zone</span> Radiative layer of stars

A radiation zone, or radiative region is a layer of a star's interior where energy is primarily transported toward the exterior by means of radiative diffusion and thermal conduction, rather than by convection. Energy travels through the radiation zone in the form of electromagnetic radiation as photons.

In atmospheric dynamics, oceanography, asteroseismology and geophysics, the Brunt–Väisälä frequency, or buoyancy frequency, is a measure of the stability of a fluid to vertical displacements such as those caused by convection. More precisely it is the frequency at which a vertically displaced parcel will oscillate within a statically stable environment. It is named after David Brunt and Vilho Väisälä. It can be used as a measure of atmospheric stratification.

<span class="mw-page-title-main">Hayashi track</span> Luminosity–temperature relationship in stars

The Hayashi track is a luminosity–temperature relationship obeyed by infant stars of less than 3 M in the pre-main-sequence phase of stellar evolution. It is named after Japanese astrophysicist Chushiro Hayashi. On the Hertzsprung–Russell diagram, which plots luminosity against temperature, the track is a nearly vertical curve. After a protostar ends its phase of rapid contraction and becomes a T Tauri star, it is extremely luminous. The star continues to contract, but much more slowly. While slowly contracting, the star follows the Hayashi track downwards, becoming several times less luminous but staying at roughly the same surface temperature, until either a radiative zone develops, at which point the star starts following the Henyey track, or nuclear fusion begins, marking its entry onto the main sequence.

A hydrogen-like atom (or hydrogenic atom) is any atom or ion with a single valence electron. These atoms are isoelectronic with hydrogen. Examples of hydrogen-like atoms include, but are not limited to, hydrogen itself, all alkali metals such as Rb and Cs, singly ionized alkaline earth metals such as Ca+ and Sr+ and other ions such as He+, Li2+, and Be3+ and isotopes of any of the above. A hydrogen-like atom includes a positively charged core consisting of the atomic nucleus and any core electrons as well as a single valence electron. Because helium is common in the universe, the spectroscopy of singly ionized helium is important in EUV astronomy, for example, of DO white dwarf stars.

<span class="mw-page-title-main">Radius of curvature</span> Radius of the circle which best approximates a curve at a given point

In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or combinations thereof.

<span class="mw-page-title-main">Mass–action ratio</span> Definition of the mass-action ratio, as used in chemistry

The mass–action ratio, often denoted by , is the ratio of the product concentrations, p, to reactant concentrations, s. The concentrations may or may not be at equilibrium.

In astrophysics, the virial mass is the mass of a gravitationally bound astrophysical system, assuming the virial theorem applies. In the context of galaxy formation and dark matter halos, the virial mass is defined as the mass enclosed within the virial radius of a gravitationally bound system, a radius within which the system obeys the virial theorem. The virial radius is determined using a "top-hat" model. A spherical "top hat" density perturbation destined to become a galaxy begins to expand, but the expansion is halted and reversed due to the mass collapsing under gravity until the sphere reaches equilibrium – it is said to be virialized. Within this radius, the sphere obeys the virial theorem which says that the average kinetic energy is equal to minus one half times the average potential energy, , and this radius defines the virial radius.

The Cohesion number (Coh) is a useful dimensionless number in particle technology by which the cohesivity of different powders can be compared. This is especially useful in DEM simulations of granular materials where scaling of the size and stiffness of the particles are inevitable due to the computationally demanding nature of the DEM modelling.

Taylor–von Neumann–Sedov blast wave refers to a blast wave induced by a strong explosion. The blast wave was described by a self-similar solution independently by G. I. Taylor, John von Neumann and Leonid Sedov during World War II.

References

  1. "Jeans instability". Oxford Reference. Retrieved 2024-01-05.
  2. Bonnor, W. B. (1957). "1957MNRAS.117..104B Page 104". Monthly Notices of the Royal Astronomical Society. 117: 104. Bibcode:1957MNRAS.117..104B. doi:10.1093/mnras/117.1.104 . Retrieved 2024-01-05.
  3. "The Jeans Collapse Criterion". csep10.phys.utk.edu. Retrieved 2024-01-05.
  4. Halley, Edmund (1720–1721). "Of the Infinity of the Sphere of Fix'd Stars. By Edmund Halley, L. L. D. R. S. S." Philosophical Transactions (1683-1775). 31: 22–24. ISSN   0260-7085. JSTOR   103379.
  5. Newton, Isaac. "Original letter from Isaac Newton to Richard Bentley, dated 17 January 1692/3 (Diplomatic)". www.newtonproject.ox.ac.uk. Retrieved 11 November 2023.
  6. Peebles, P. J. E. (2022). Cosmology's century: an inside history of our modern understanding of the universe. Princeton Oxford: Princeton University Press. ISBN   9780691196022.
  7. 1 2 Jeans, J. H. (1902). "The Stability of a Spherical Nebula". Philosophical Transactions of the Royal Society A. 199 (312–320): 1–53. Bibcode:1902RSPTA.199....1J. doi: 10.1098/rsta.1902.0012 . JSTOR   90845.
  8. Binney, James (2008). Galactic dynamics. Scott Tremaine (2nd ed.). Princeton: Princeton University Press. ISBN   978-0-691-13026-2. OCLC   195749071.
  9. 1 2 Ershkovich, A. I. (2011-08-29). "The "Jeans Swindle": the end of a myth?". arXiv: 1108.5519 [astro-ph.GA].
  10. Falco, M.; Hansen, S. H.; Wojtak, R.; Mamon, G. A. (2013-05-01). "Why does the Jeans Swindle work?". Monthly Notices of the Royal Astronomical Society: Letters. 431 (1): L6–L9. arXiv: 1210.3363 . doi:10.1093/mnrasl/sls051. ISSN   1745-3933.
  11. LeBlanc, Francis (2010). An Introduction to Stellar Astrophysics. Chichester, West Sussex, U.K.: Wiley. pp. 46–47. ISBN   978-0-470-69957-7. OCLC   475440765.
  12. "Jeans Length -- from Eric Weisstein's World of Physics".
  13. Abbasi, Amir (2018). "Effect of polarization force on the Jeans instability in collisional dusty plasmas". Plasma Science and Technology. 20 (3): 035301. Bibcode:2018PlST...20c5301A. doi:10.1088/2058-6272/aa96fa. S2CID   103819409.
  14. [Glatzmaier G.A. lecture notes, University of California, Santa Cruz, https://websites.pmc.ucsc.edu/~glatz/astr_112/lectures/notes6.pdf]