Dark nebula

Last updated
The dark nebula LDN 1768 in front of background stars All Quiet in the Nursery%3F.jpg
The dark nebula LDN 1768 in front of background stars

A dark nebula or absorption nebula is a type of interstellar cloud, particularly molecular clouds, that is so dense that it obscures the visible wavelengths of light from objects behind it, such as background stars and emission or reflection nebulae. The extinction of the light is caused by interstellar dust grains located in the coldest, densest parts of molecular clouds. Clusters and large complexes of dark nebulae are associated with Giant Molecular Clouds. Isolated small dark nebulae are called Bok globules. Like other interstellar dust or material, things it obscures are only visible using radio waves in radio astronomy or infrared in infrared astronomy.

Contents

Dark clouds appear so because of sub-micrometre-sized dust particles, coated with frozen carbon monoxide and nitrogen, which effectively block the passage of light at visible wavelengths. Also present are molecular hydrogen, atomic helium, C18O (CO with oxygen as the 18O isotope), CS, NH3 (ammonia), H2CO (formaldehyde), c-C3H2 (cyclopropenylidene) and a molecular ion N2H+ (diazenylium), all of which are relatively transparent. These clouds are the spawning grounds of stars and planets, and understanding their development is essential to understanding star formation. [1] [2]

The form of such dark clouds is very irregular: they have no clearly defined outer boundaries and sometimes take on convoluted serpentine shapes. The closest and largest dark nebulae are visible to the naked eye, since they are the least obscured by stars in between Earth and the nebula, and because they have the largest angular size, appearing as dark patches against the brighter background of the Milky Way like the Coalsack Nebula and the Great Rift. These naked-eye objects are sometimes known as dark cloud constellations and take on a variety of names.

In the inner molecular regions of dark nebulae, important events take place, such as the formation of stars and masers.

Complexes and constellations

Along with molecular clouds, dark nebula make up molecular cloud complexes.

Dark nebula form in the night sky apparent dark cloud constellations.

The Milky Way as seen by Gaia, with prominent dark features labeled in white, as well as prominent star clouds labeled in black. Milkyway360-hemispheres-32k m14-g1 Clouds.jpg
The Milky Way as seen by Gaia, with prominent dark features labeled in white, as well as prominent star clouds labeled in black.
Main dark nebulae of the solar apex half of the galactic plane. Regioni celesti scelte - Osc A.png
Main dark nebulae of the solar apex half of the galactic plane.
Main dark nebulae of the solar antapex half of the galactic plane. Regioni celesti scelte - Osc B.png
Main dark nebulae of the solar antapex half of the galactic plane.

See also

Related Research Articles

<span class="mw-page-title-main">Molecular cloud</span> Type of interstellar cloud

A molecular cloud, sometimes called a stellar nursery (if star formation is occurring within), is a type of interstellar cloud, the density and size of which permit absorption nebulae, the formation of molecules (most commonly molecular hydrogen, H2), and the formation of H II regions. This is in contrast to other areas of the interstellar medium that contain predominantly ionized gas.

<span class="mw-page-title-main">Nebula</span> Body of interstellar clouds

A nebula is a distinct luminescent part of interstellar medium, which can consist of ionized, neutral, or molecular hydrogen and also cosmic dust. Nebulae are often star-forming regions, such as in the "Pillars of Creation" in the Eagle Nebula. In these regions, the formations of gas, dust, and other materials "clump" together to form denser regions, which attract further matter and eventually become dense enough to form stars. The remaining material is then thought to form planets and other planetary system objects.

<span class="mw-page-title-main">Sagittarius (constellation)</span> Zodiac constellation in the southern celestial hemisphere

Sagittarius is one of the constellations of the zodiac and is located in the Southern celestial hemisphere. It is one of the 48 constellations listed by the 2nd-century astronomer Ptolemy and remains one of the 88 modern constellations. Its old astronomical symbol is (♐︎). Its name is Latin for "archer". Sagittarius is commonly represented as a centaur drawing a bow. It lies between Scorpius and Ophiuchus to the west and Capricornus and Microscopium to the east.

<span class="mw-page-title-main">Star formation</span> Process by which dense regions of molecular clouds in interstellar space collapse to form stars

Star formation is the process by which dense regions within molecular clouds in interstellar space, sometimes referred to as "stellar nurseries" or "star-forming regions", collapse and form stars. As a branch of astronomy, star formation includes the study of the interstellar medium (ISM) and giant molecular clouds (GMC) as precursors to the star formation process, and the study of protostars and young stellar objects as its immediate products. It is closely related to planet formation, another branch of astronomy. Star formation theory, as well as accounting for the formation of a single star, must also account for the statistics of binary stars and the initial mass function. Most stars do not form in isolation but as part of a group of stars referred as star clusters or stellar associations.

<span class="mw-page-title-main">H II region</span> Large, low-density interstellar cloud of partially ionized gas

An H II region or HII region is a region of interstellar atomic hydrogen that is ionized. It is typically in a molecular cloud of partially ionized gas in which star formation has recently taken place, with a size ranging from one to hundreds of light years, and density from a few to about a million particles per cubic centimetre. The Orion Nebula, now known to be an H II region, was observed in 1610 by Nicolas-Claude Fabri de Peiresc by telescope, the first such object discovered.

<span class="mw-page-title-main">Eagle Nebula</span> Open cluster in the constellation Serpens

The Eagle Nebula is a young open cluster of stars in the constellation Serpens, discovered by Jean-Philippe de Cheseaux in 1745–46. Both the "Eagle" and the "Star Queen" refer to visual impressions of the dark silhouette near the center of the nebula, an area made famous as the "Pillars of Creation" imaged by the Hubble Space Telescope. The nebula contains several active star-forming gas and dust regions, including the aforementioned Pillars of Creation. The Eagle Nebula lies in the Sagittarius Arm of the Milky Way.

<span class="mw-page-title-main">North America Nebula</span> Emission nebula in the constellation Cygnus

The North America Nebula is an emission nebula in the constellation Cygnus, close to Deneb. It is named because its shape resembles North America.

<span class="mw-page-title-main">Elephant's Trunk Nebula</span> Nebula in the constellation Cepheus

The Elephant's Trunk Nebula is a concentration of interstellar gas and dust within the much larger ionized gas region IC 1396 located in the constellation Cepheus about 2,400 light years away from Earth. The piece of the nebula shown here is the dark, dense globule IC 1396A; it is commonly called the Elephant's Trunk nebula because of its appearance at visible light wavelengths, where there is a dark patch with a bright, sinuous rim. The bright rim is the surface of the dense cloud that is being illuminated and ionized by a very bright, massive star that is just to the east of IC 1396A. The entire IC 1396 region is ionized by the massive star, except for dense globules that can protect themselves from the star's harsh ultraviolet rays.

<span class="mw-page-title-main">Horsehead Nebula</span> Dark nebula in the constellation Orion

The Horsehead Nebula is a small dark nebula in the constellation Orion. The nebula is located just to the south of Alnitak, the easternmost star of Orion's Belt, and is part of the much larger Orion molecular cloud complex. It appears within the southern region of the dense dust cloud known as Lynds 1630, along the edge of the much larger, active star-forming H II region called IC 434.

<span class="mw-page-title-main">Lagoon Nebula</span> Emission nebula in Sagittarius

The Lagoon Nebula is a giant interstellar cloud in the constellation Sagittarius. It is classified as an emission nebula and as an H II region.

<span class="mw-page-title-main">Small Sagittarius Star Cloud</span> Star cloud in Sagittarius

The Small Sagittarius Star Cloud is a star cloud in the constellation of Sagittarius approximately 600 light years wide, which was catalogued by Charles Messier in 1764. It should not be confused with the nearby Large Sagittarius Star Cloud which lies about 10° to the south.

<span class="mw-page-title-main">Bok globule</span> Isolated, small, opaque nebula

In astronomy, Bok globules are isolated and relatively small dark nebulae, containing dense cosmic dust and gas from which star formation may take place. Bok globules are found within H II regions, and typically have a mass of about 2 to 50 solar masses contained within a region about a light year or so across (about 4.5×1047 m3). They contain molecular hydrogen (H2), carbon oxides and helium, and around 1% (by mass) silicate dust. Bok globules most commonly result in the formation of double- or multiple-star systems.

<span class="mw-page-title-main">Dark Horse (astronomy)</span> Dark nebula in Ophiuchus

The Dark Horse Nebula or Great Dark Horse is a large dark nebula that, from Earth's perspective, obscures part of the upper central bulge of the Milky Way. The Dark Horse lies in the equatorial constellation Ophiuchus, near its borders with the more famous constellations Scorpius and Sagittarius. It is a large, visible feature of the Milky Way's Great Rift, uniting several individually catalogued dark nebulae, including the Pipe Nebula. It is visible from Earth only on clear moonless nights without light pollution and with low humidity.

<span class="mw-page-title-main">HH 46/47</span> Herbig-Haro objects in the constellation Vela

HH 46/47 is a complex of Herbig–Haro objects, located around 450 parsecs away in a Bok globule near the Gum nebula. Jets of partially ionized gas emerging from a young star produce visible shocks upon impact with the ambient medium. Discovered in 1977, it is one of the most studied HH objects and the first jet to be associated with young stars was found in HH 46/47. Four emission nebulae, HH 46, HH 47A, HH 47C and HH 47D and a jet, HH 47B, have been identified in the complex. It also contains a mostly unipolar molecular outflow, and two large bow shocks on opposite sides of the source star. The overall size of the complex is about 3 parsecs.

<span class="mw-page-title-main">Barnard 68</span> Dark absorption nebula

Barnard 68 is a molecular cloud, dark absorption nebula or Bok globule, towards the southern constellation Ophiuchus and well within the Milky Way galaxy at a distance of about 125 parsecs. It is both close and dense enough that stars behind it cannot be seen from Earth. American astronomer Edward Emerson Barnard added this nebula to his catalog of dark nebulae in 1919. His catalog was published in 1927, at which stage it included some 350 objects. Because of its opacity, its interior is extremely cold, its temperature being about 16 K (−257 °C/-431 °F). Its mass is about twice that of the Sun and it measures about half a light-year across.

<span class="mw-page-title-main">Great Rift (astronomy)</span> Interstellar clouds of cosmic dust

In astronomy, the Great Rift is a dark band caused by interstellar clouds of cosmic dust that significantly obscure (extinguish) the center and most radial sectors of the Milky Way galaxy from Earth's perspective.

<span class="mw-page-title-main">Elephant trunk (astronomy)</span>

Elephant trunks are a type of interstellar matter formations found in molecular clouds. They are located in the neighborhood of massive O type and B type stars, which, through their intense radiation, can create expanding regions of ionized gas known as H II regions. Elephant trunks resemble massive pillars or columns of gas and dust, but they come in various shapes, lengths, and colors. Astronomers study elephant trunks because of their unique formation process and use 2-D and 3-D simulations to try to understand how this phenomenon occurs.

<span class="mw-page-title-main">Serpens–Aquila Rift</span> Region located in the constellations Serpens and Aquila that contains dark interstellar clouds

The Serpens–Aquila Rift (also known as the Aquila Rift) is a region of the sky in the constellations Aquila, Serpens Cauda, and eastern Ophiuchus containing dark interstellar clouds. The region forms part of the Great Rift, the nearby dark cloud of cosmic dust that obscures the middle of the galactic plane of the Milky Way, looking inwards and towards its other radial sectors. The clouds that form this structure are called "molecular clouds", constituting a phase of the interstellar medium which is cold and dense enough for molecules to form, particularly molecular hydrogen (H2). These clouds are opaque to light in the optical part of the spectrum due to the presence of interstellar dust grains mixed with the gaseous component of the clouds. Therefore, the clouds in the Serpens-Aquila Rift block light from background stars in the disk of the Galaxy, forming the dark rift. The complex is located in a direction towards the inner Galaxy, where molecular clouds are common, so it is possible that not all components of the rift are at the same distance and physically associated with each other.

<span class="mw-page-title-main">Large Sagittarius Star Cloud</span> Brightest visible region of the Milky Way

The Large Sagittarius Star Cloud is the brightest visible region of the Milky Way galaxy, a portion of the central bulge seen around the thick dust of the Great Rift which lines the northwest edge. It should not be confused with the nearby Small Sagittarius Star Cloud, which lies about 10° to the north. The star cloud stretches several degrees north from the star Gamma Sagittarii and is considered a splendid sight in binoculars - "a bright glow with multitudes of momentarily resolved star-sparks". To the naked eye, the Cloud appears bright and smooth, and is said to resemble a puff of "steam" escaping from the spout of the Sagittarius "Teapot" asterism.

References

  1. Di Francesco, James; Hogerheijde, Michiel R.; Welch, William J.; Bergin, Edwin A. (November 2002). "Abundances of Molecular Species in Bernard 68". The Astrophysical Journal . 124 (5): 2749–2755. arXiv: astro-ph/0208298 . Bibcode:2002AJ....124.2749D. doi:10.1086/344078. S2CID   119078546.
  2. ESO - eso9934 - Secrets of a Dark Cloud Archived 2009-02-04 at the Wayback Machine