An explosively pumped flux compression generator (EPFCG) is a device used to generate a high-power electromagnetic pulse by compressing magnetic flux using high explosives.
EPFCGs are physically destroyed during operation, making them single-use. They require a starting current pulse to operate, usually supplied by capacitors.
Explosively pumped flux compression generators are used to create ultrahigh magnetic fields in physics and materials science research [1] and extremely intense pulses of electric current for pulsed power applications. They are being investigated as power sources for electronic warfare devices known as transient electromagnetic devices that generate an electromagnetic pulse without the costs, side effects, or enormous range of a nuclear electromagnetic pulse device.
The first work on these generators was conducted by the VNIIEF center for nuclear research in Sarov in the Soviet Union at the beginning of the 1950s followed by Los Alamos National Laboratory in the United States.
At the start of the 1950s, the need for very short and powerful electrical pulses became evident to Soviet scientists conducting nuclear fusion research. The Marx generator, which stores energy in capacitors, was the only device capable at the time of producing such high power pulses. The prohibitive cost of the capacitors required to obtain the desired power motivated the search for a more economical device. The first magneto-explosive generators, which followed from the ideas of Andrei Sakharov, were designed to fill this role. [2] [3]
Magneto-explosive generators use a technique called "magnetic flux compression", described in detail below. The technique is made possible when the time scales over which the device operates are sufficiently brief that resistive current loss is negligible, and the magnetic flux through any surface surrounded by a conductor (copper wire, for example) remains constant, even though the size and shape of the surface may change.
This flux conservation can be demonstrated from Maxwell's equations. The most intuitive explanation of this conservation of enclosed flux follows from Lenz's law, which says that any change in the flux through an electric circuit will cause a current in the circuit which will oppose the change. For this reason, reducing the area of the surface enclosed by a closed loop conductor with a magnetic field passing through it, which would reduce the magnetic flux, results in the induction of current in the electrical conductor, which tends to keep the enclosed flux at its original value. In magneto-explosive generators, the reduction in area is accomplished by detonating explosives packed around a conductive tube or disk, so the resulting implosion compresses the tube or disk. [4] Since flux is equal to the magnitude of the magnetic field multiplied by the area of the surface, as the surface area shrinks the magnetic field strength inside the conductor increases. The compression process partially transforms the chemical energy of the explosives into the energy of an intense magnetic field surrounded by a correspondingly large electric current.
The purpose of the flux generator can be either the generation of an extremely strong magnetic field pulse, or an extremely strong electric current pulse; in the latter case the closed conductor is attached to an external electric circuit. This technique has been used to create the most intense manmade magnetic fields on Earth; fields up to about 1000 teslas (about 1000 times the strength of a typical neodymium permanent magnet) can be created for a few microseconds.
An external magnetic field (blue lines) threads a closed ring made of a perfect conductor (with zero resistance). The total magnetic flux through the ring is equal to the magnetic field multiplied by the area of the surface spanning the ring. The nine field lines represent the magnetic flux threading the ring.
Suppose the ring is deformed, reducing its cross-sectional area. The magnetic flux threading the ring, represented by five field lines, is reduced by the same ratio as the area of the ring. The variation of the magnetic flux induces a current (red arrows) in the ring by Faraday's law of induction, which in turn creates a new magnetic field circling the wire (green arrows) by Ampere's circuital law. The new magnetic field opposes the field outside the ring but adds to the field inside, so that the total flux in the interior of the ring is maintained: four green field lines added to the five blue lines give the original nine field lines.
By adding together the external magnetic field and the induced field, it can be shown that the net result is that the magnetic field lines originally threading the hole stay inside the hole, thus flux is conserved, and a current has been created in the conductive ring. The magnetic field lines are "pinched" closer together, so the (average) magnetic field intensity inside the ring increases by the ratio of the original area to the final area.
The simple basic principle of flux compression can be applied in a variety of different ways. Soviet scientists at the VNIIEF in Sarov, pioneers in this domain, conceived of three different types of generators: [5] [3] [6]
Such generators can, if necessary, be utilised independently, or even assembled in a chain of successive stages: the energy produced by each generator is transferred to the next, which amplifies the pulse, and so on. For example, it is foreseen that the DEMG generator will be supplied by a MK-2 type generator.
Also, these can be either destructed just after an experiment, or used again and again while complying acceptable time to use. [7]
In the spring of 1952, R. Z. Lyudaev, E. A. Feoktistova, G. A. Tsyrkov, and A. A. Chvileva undertook the first experiment with this type of generator, with the goal of obtaining a very high magnetic field.
The MK-1 generator functions as follows:
The first experiments were able to attain magnetic fields of millions of gauss (hundreds of teslas), given an initial field of 30 kG (3 T) which is in the free space "air" the same as H = B/μ0 = (3 Vs/m2) / (4π × 10−7 Vs/Am) = 2.387×106 A/m (approximately 2.4 MA/m).
Helical generators were principally conceived to deliver an intense current to a load situated at a safe distance. They are frequently used as the first stage of a multi-stage generator, with the exit current used to generate a very intense magnetic field in a second generator.
The MK-2 generators function as follows:
The MK-2 generator is particularly interesting for the production of intense currents, up to 108 A (100 MA), as well as a very high energy magnetic field, as up to 20% of the explosive energy can be converted to magnetic energy, and the field strength can attain 2 × 106 gauss (200 T).
The practical realization of high performance MK-2 systems required the pursuit of fundamental studies by a large team of researchers; this was effectively achieved by 1956, following the production of the first MK-2 generator in 1952, and the achievement of currents over 100 megaamperes from 1953.
A DEMG generator functions as follows:
Systems using up to 25 modules have been developed at VNIIEF. Output of 100 MJ at 256 MA have been produced by a generator a metre in diameter composed of three modules.
Electromagnetic or magnetic induction is the production of an electromotive force (emf) across an electrical conductor in a changing magnetic field.
In electricity generation, a generator is a device that converts motion-based power or fuel-based power into electric power for use in an external circuit. Sources of mechanical energy include steam turbines, gas turbines, water turbines, internal combustion engines, wind turbines and even hand cranks. The first electromagnetic generator, the Faraday disk, was invented in 1831 by British scientist Michael Faraday. Generators provide nearly all the power for electrical grids.
An electromagnet is a type of magnet in which the magnetic field is produced by an electric current. Electromagnets usually consist of wire wound into a coil. A current through the wire creates a magnetic field which is concentrated in the hole in the center of the coil. The magnetic field disappears when the current is turned off. The wire turns are often wound around a magnetic core made from a ferromagnetic or ferrimagnetic material such as iron; the magnetic core concentrates the magnetic flux and makes a more powerful magnet.
RDS-37 was the Soviet Union's first two-stage hydrogen bomb, first tested on 22 November 1955. The weapon had a nominal yield of approximately 3 megatons. It was scaled down to 1.6 megatons for the live test.
Electromagnetic forming is a type of high-velocity, cold forming process for electrically conductive metals, most commonly copper and aluminium. The workpiece is reshaped by high-intensity pulsed magnetic fields that induce a current in the workpiece and a corresponding repulsive magnetic field, rapidly repelling portions of the workpiece. The workpiece can be reshaped without any contact from a tool, although in some instances the piece may be pressed against a die or former. The technique is sometimes called high-velocity forming or electromagnetic pulse technology.
Pulsed power is the science and technology of accumulating energy over a relatively long period of time and releasing it instantly, thus increasing the instantaneous power. They can be used in some applications such as food processing, water treatment, weapon, and medical applications.
A homopolar generator is a DC electrical generator comprising an electrically conductive disc or cylinder rotating in a plane perpendicular to a uniform static magnetic field. A potential difference is created between the center of the disc and the rim with an electrical polarity that depends on the direction of rotation and the orientation of the field. It is also known as a unipolar generator, acyclic generator, disk dynamo, or Faraday disc. The voltage is typically low, on the order of a few volts in the case of small demonstration models, but large research generators can produce hundreds of volts, and some systems have multiple generators in series to produce an even larger voltage. They are unusual in that they can source tremendous electric current, some more than a million amperes, because the homopolar generator can be made to have very low internal resistance. Also, the homopolar generator is unique in that no other rotary electric machine can produce DC without using rectifiers or commutators.
A pinch is the compression of an electrically conducting filament by magnetic forces, or a device that does such. The conductor is usually a plasma, but could also be a solid or liquid metal. Pinches were the first type of device used for experiments in controlled nuclear fusion power.
A variable force solenoid (VFS) is an electro-hydraulic device that controls pressure proportionally or inversely proportionally to a signal obtained from the on-board controller of a powertrain. A low flow VFS is used as a signal level devices for transmission line pressure control or application of clutches. A high flow VFS controls line pressure directly or are used for direct shift clutch control. A VFS is a type of Transmission Solenoid. One or more VFS can be used in an automatic transmission or installed in an automatic transmission valve body.
An explosive-driven ferroelectric generator is a compact pulsed power generator, a device used for generation of short high-voltage high-current pulse. The energies available are fairly low, in the range of single joules, the voltages range in tens of kilovolts to over 100 kV, and the powers range in hundreds of kilowatts to megawatts. They are suitable for delivering high voltage pulses to high-impedance loads and can directly drive radiating circuits.
An explosive-driven ferromagnetic generator is a compact pulsed power generator, a device used for generation of short high-voltage high-current pulse by releasing energy stored in a permanent magnet. It is suited for delivering high-current pulses (kiloamperes) to low-impedance loads.
A vector inversion generator (VIG) is an electric pulse compression and voltage multiplication device, allowing shaping a slower, lower voltage pulse to a narrower, higher-voltage one. VIGs are used in military technology, e.g. some directed-energy weapons, as a secondary stage of another pulsed power source, commonly an explosive-driven ferroelectric generator.
Clarence Max Fowler was an American physicist who worked at Los Alamos between 1952 and 1996. His main contribution was on explosively pumped flux compression generators.
The Perhapsatron was an early fusion power device based on the pinch concept in the 1950s. Conceived by James (Jim) Tuck while working at Los Alamos National Laboratory (LANL), he whimsically named the device on the chance that it might be able to create fusion reactions.
Sheet explosives are materials formed by combining an explosive with a "rubberizer" — a flexible binding agent. The resulting compound is cast into a flat sheet which is typically pliable and deformable over a wide range of temperature. Typical products are generally shock-insensitive secondary explosives, requiring a blasting cap or other detonator.
An electromagnetic pulse (EMP), also referred to as a transient electromagnetic disturbance (TED), is a brief burst of electromagnetic energy. The origin of an EMP can be natural or artificial, and can occur as an electromagnetic field, as an electric field, as a magnetic field, or as a conducted electric current. The electromagnetic interference caused by an EMP can disrupt communications and damage electronic equipment. An EMP such as a lightning strike can physically damage objects such as buildings and aircraft. The management of EMP effects is a branch of electromagnetic compatibility (EMC) engineering.
This glossary of electrical and electronics engineering is a list of definitions of terms and concepts related specifically to electrical engineering and electronics engineering. For terms related to engineering in general, see Glossary of engineering.
The Linus program was an experimental fusion power project developed by the United States Naval Research Laboratory (NRL) starting in 1971. The goal of the project was to produce a controlled fusion reaction by compressing plasma inside a metal liner. The basic concept is today known as magnetized target fusion.
Theta-pinch, or θ-pinch, is a type of fusion power reactor design. The name refers to the configuration of currents used to confine the plasma fuel in the reactor, arranged to run around a cylinder in the direction normally denoted as theta in polar coordinate diagrams. The name was chosen to differentiate it from machines based on the pinch effect that arranged their currents running down the centre of the cylinder; these became known as z-pinch machines, referring to the Z-axis in cartesian coordinates.