This article needs additional citations for verification .(June 2023) |
Implosion is the collapse of an object into itself from a pressure differential or gravitational force. The opposite of explosion (which expands the volume), implosion reduces the volume occupied and concentrates matter and energy. Implosion involves a difference between internal (lower) and external (higher) pressure, or inward and outward forces, that is so large that the structure collapses inward into itself, or into the space it occupied if it is not a completely solid object.[ citation needed ] Examples of implosion include a submarine being crushed by hydrostatic pressure [1] and the collapse of a star under its own gravitational pressure.
In some but not all cases, an implosion propels material outward, for example due to the force of inward falling material rebounding, or peripheral material being ejected as the inner parts collapse. If the object was previously solid, then implosion usually requires it to take on a more dense form—in effect to be more concentrated, compressed, or converted into a denser material.
In an implosion-type nuclear weapon design, a sphere of plutonium, uranium, or other fissile material is imploded by a spherical arrangement of explosive charges. This decreases the material's volume and thus increases its density by a factor of two to three, causing it to reach critical mass and create a nuclear explosion.
In some forms of thermonuclear weapons, the energy from this explosion is then used to implode a capsule of fusion fuel before igniting it, causing a fusion reaction (see Teller–Ulam design). In general, the use of radiation to implode something, as in a hydrogen bomb or in laser driven inertial confinement fusion, is known as radiation implosion.
Cavitation (bubble formation/collapse in a fluid) involves an implosion process. When a cavitation bubble forms in a liquid (for example, by a high-speed water propeller), this bubble is typically rapidly collapsed—imploded—by the surrounding liquid.
Implosion is a key part of the gravitational collapse of large stars, which can lead to the creation of supernovae, neutron stars and black holes.
In the most common case, the innermost part of a large star (called the core) stops burning and without this source of heat, the forces holding electrons and protons apart are no longer strong enough to do so. The core collapses in on itself exceedingly quickly, and becomes a neutron star or black hole; the outer layers of the original star fall inwards and may rebound off the newly created neutron star (if one was created), creating a supernova.
A high vacuum exists within all cathode-ray tubes. If the outer glass envelope is damaged, a dangerous implosion may occur. The implosion may scatter glass pieces at dangerous speeds. While modern CRTs used in televisions and computer displays have epoxy-bonded face-plates or other measures to prevent shattering of the envelope, CRTs removed from equipment must be handled carefully to avoid injury. [2]
The demolition of large buildings using precisely placed and timed explosions so that the structure collapses on itself is often erroneously described as implosion.
Cavitation in fluid mechanics and engineering normally refers to the phenomenon in which the static pressure of a liquid reduces to below the liquid's vapour pressure, leading to the formation of small vapor-filled cavities in the liquid. When subjected to higher pressure, these cavities, called "bubbles" or "voids", collapse and can generate shock waves that may damage machinery. These shock waves are strong when they are very close to the imploded bubble, but rapidly weaken as they propagate away from the implosion. Cavitation is a significant cause of wear in some engineering contexts. Collapsing voids that implode near to a metal surface cause cyclic stress through repeated implosion. This results in surface fatigue of the metal, causing a type of wear also called "cavitation". The most common examples of this kind of wear are to pump impellers, and bends where a sudden change in the direction of liquid occurs. Cavitation is usually divided into two classes of behavior: inertial cavitation and non-inertial cavitation.
A neutron star is the collapsed core of a massive supergiant star. It results from the supernova explosion of a massive star—combined with gravitational collapse—that compresses the core past white dwarf star density to that of atomic nuclei. Except for black holes, neutron stars are the smallest and densest known class of stellar objects. They have a radius on the order of 10 kilometers (6 mi) and a mass of about 1.4 M☉. Stars that collapse into neutron stars have a total mass of between 10 and 25 solar masses (M☉), or possibly more for those that are especially rich in elements heavier than hydrogen and helium.
A supernova is a powerful and luminous explosion of a star. A supernova occurs during the last evolutionary stages of a massive star, or when a white dwarf is triggered into runaway nuclear fusion. The original object, called the progenitor, either collapses to a neutron star or black hole, or is completely destroyed to form a diffuse nebula. The peak optical luminosity of a supernova can be comparable to that of an entire galaxy before fading over several weeks or months.
Stellar evolution is the process by which a star changes over the course of its lifetime and how it can lead to the creation of a new star. Depending on the mass of the star, its lifetime can range from a few million years for the most massive to trillions of years for the least massive, which is considerably longer than the current age of the universe. The table shows the lifetimes of stars as a function of their masses. All stars are formed from collapsing clouds of gas and dust, often called nebulae or molecular clouds. Over the course of millions of years, these protostars settle down into a state of equilibrium, becoming what is known as a main-sequence star.
Sonoluminescence is the emission of light from imploding bubbles in a liquid when excited by sound.
Nuclear weapon designs are physical, chemical, and engineering arrangements that cause the physics package of a nuclear weapon to detonate. There are three existing basic design types:
In astronomy, the term compact object refers collectively to white dwarfs, neutron stars, and black holes. It could also include exotic stars if such hypothetical, dense bodies are confirmed to exist. All compact objects have a high mass relative to their radius, giving them a very high density, compared to ordinary atomic matter.
A super-luminous supernova is a type of stellar explosion with a luminosity 10 or more times higher than that of standard supernovae. Like supernovae, SLSNe seem to be produced by several mechanisms, which is readily revealed by their light-curves and spectra. There are multiple models for what conditions may produce an SLSN, including core collapse in particularly massive stars, millisecond magnetars, interaction with circumstellar material, or pair-instability supernovae.
Gravitational collapse is the contraction of an astronomical object due to the influence of its own gravity, which tends to draw matter inward toward the center of gravity. Gravitational collapse is a fundamental mechanism for structure formation in the universe. Over time an initial, relatively smooth distribution of matter, after sufficient accretion, may collapse to form pockets of higher density, such as stars or black holes.
The convective overturn model of supernovae was proposed by Bethe and Wilson in 1985, and received a dramatic test with SN 1987A, and the detection of neutrinos from the explosion. The model is for type II supernovae, which take place in stars more massive than 8 solar masses.
Supernova nucleosynthesis is the nucleosynthesis of chemical elements in supernova explosions.
In the controlled demolition industry, building implosion is the strategic placing of explosive material and timing of its detonation so that a structure collapses on itself in a matter of seconds, minimizing the physical damage to its immediate surroundings. Despite its terminology, building implosion also includes the controlled demolition of other structures, like bridges, smokestacks, towers, and tunnels. This is typically done to save time and money of what would otherwise be an extensive demolition process with construction equipment, as well as to reduce construction workers exposure to infrastructure that is in severe disrepair.
Carbon detonation or carbon deflagration is the violent reignition of thermonuclear fusion in a white dwarf star that was previously slowly cooling. It involves a runaway thermonuclear process which spreads through the white dwarf in a matter of seconds, producing a type Ia supernova which releases an immense amount of energy as the star is blown apart. The carbon detonation/deflagration process leads to a supernova by a different route than the better known type II (core-collapse) supernova.
A Type II supernova or SNII results from the rapid collapse and violent explosion of a massive star. A star must have at least eight times, but no more than 40 to 50 times, the mass of the Sun (M☉) to undergo this type of explosion. Type II supernovae are distinguished from other types of supernovae by the presence of hydrogen in their spectra. They are usually observed in the spiral arms of galaxies and in H II regions, but not in elliptical galaxies; those are generally composed of older, low-mass stars, with few of the young, very massive stars necessary to cause a supernova.
A pair-instability supernova is a type of supernova predicted to occur when pair production, the production of free electrons and positrons in the collision between atomic nuclei and energetic gamma rays, temporarily reduces the internal radiation pressure supporting a supermassive star's core against gravitational collapse. This pressure drop leads to a partial collapse, which in turn causes greatly accelerated burning in a runaway thermonuclear explosion, resulting in the star being blown completely apart without leaving a stellar remnant behind.
Gamma-ray burst progenitors are the types of celestial objects that can emit gamma-ray bursts (GRBs). GRBs show an extraordinary degree of diversity. They can last anywhere from a fraction of a second to many minutes. Bursts could have a single profile or oscillate wildly up and down in intensity, and their spectra are highly variable unlike other objects in space. The near complete lack of observational constraint led to a profusion of theories, including evaporating black holes, magnetic flares on white dwarfs, accretion of matter onto neutron stars, antimatter accretion, supernovae, hypernovae, and rapid extraction of rotational energy from supermassive black holes, among others.
A stellar collision is the coming together of two stars caused by stellar dynamics within a star cluster, or by the orbital decay of a binary star due to stellar mass loss or gravitational radiation, or by other mechanisms not yet well understood.
The Linus program was an experimental fusion power project developed by the United States Naval Research Laboratory (NRL) starting in 1971. The goal of the project was to produce a controlled fusion reaction by compressing plasma inside a metal liner. The basic concept is today known as magnetized target fusion.
Common envelope jets supernova (CEJSN) is a type of supernova, where the explosion is caused by the merger of a giant or supergiant star with a compact star such as a neutron star or a black hole. As the compact star plunges into the envelope of the giant/supergiant, it begins to accrete matter from the envelope and launches jets that can disrupt the envelope. Often, the compact star eventually merges with the core of the giant/supergiant; other times the infall stops before core merger.
Neutron stars—extremely dense remnants of stars that have undergone supernova events—have appeared in fiction since the 1960s. Their immense gravitational fields and resulting extreme tidal forces are a recurring point of focus. Some works depict the neutron stars as harbouring exotic alien lifeforms, while others focus on the habitability of the surrounding system of planets. Neutron star mergers, and their potential to cause extinction events at interstellar distances due to the enormous amounts of radiation released, also feature on occasion. Neutronium, the degenerate matter that makes up neutron stars, often turns up as a material existing outside of them in science fiction; in reality, it would likely not be stable.