Stellar core

Last updated

A stellar core is the extremely hot, dense region at the center of a star. For an ordinary main sequence star, the core region is the volume where the temperature and pressure conditions allow for energy production through thermonuclear fusion of hydrogen into helium. This energy in turn counterbalances the mass of the star pressing inward; a process that self-maintains the conditions in thermal and hydrostatic equilibrium. The minimum temperature required for stellar hydrogen fusion exceeds 107  K (10  MK ), while the density at the core of the Sun is over 100  g/cm3 . The core is surrounded by the stellar envelope, which transports energy from the core to the stellar atmosphere where it is radiated away into space. [1]

Contents

Main sequence

High-mass main sequence stars have convective cores, intermediate-mass stars have radiative cores, and low-mass stars are fully convective. Heat Transfer in Stars.svg
High-mass main sequence stars have convective cores, intermediate-mass stars have radiative cores, and low-mass stars are fully convective.

Main sequence stars are distinguished by the primary energy-generating mechanism in their central region, which joins four hydrogen nuclei to form a single helium atom through thermonuclear fusion. The Sun is an example of this class of stars. Once stars with the mass of the Sun form, the core region reaches thermal equilibrium after about 100 million (108) [2] [ verification needed ] years and becomes radiative. [3] This means the generated energy is transported out of the core via radiation and conduction rather than through mass transport in the form of convection. Above this spherical radiation zone lies a small convection zone just below the outer atmosphere.

At lower stellar mass, the outer convection shell takes up an increasing proportion of the envelope, and for stars with a mass of around 0.35  M (35% of the mass of the Sun) or less (including failed stars) the entire star is convective, including the core region. [4] These very low-mass stars (VLMS) occupy the late range of the M-type main-sequence stars, or red dwarf. The VLMS form the primary stellar component of the Milky Way at over 70% of the total population. The low-mass end of the VLMS range reaches about 0.075 M, below which ordinary (non-deuterium) hydrogen fusion does not take place and the object is designated a brown dwarf. The temperature of the core region for a VLMS decreases with decreasing mass, while the density increases. For a star with 0.1 M, the core temperature is about 5 MK while the density is around 500 g cm−3. Even at the low end of the temperature range, the hydrogen and helium in the core region is fully ionized. [4]

Logarithm of the relative energy output (e) of proton-proton (p-p), CNO, and triple-a fusion processes at different temperatures (T). The dashed line shows the combined energy generation of the p-p and CNO processes within a star. Nuclear energy generation.svg
Logarithm of the relative energy output (ε) of proton–proton (p-p), CNO, and triple-α fusion processes at different temperatures (T). The dashed line shows the combined energy generation of the p-p and CNO processes within a star.

Below about 1.2 M, energy production in the stellar core is predominantly through the proton–proton chain reaction, a process requiring only hydrogen. For stars above this mass, the energy generation comes increasingly from the CNO cycle, a hydrogen fusion process that uses intermediary atoms of carbon, nitrogen, and oxygen. In the Sun, only 1.5% of the net energy comes from the CNO cycle. For stars at 1.5 M where the core temperature reaches 18 MK, half the energy production comes from the CNO cycle and half from the pp chain. [5] The CNO process is more temperature-sensitive than the pp chain, with most of the energy production occurring near the very center of the star. This results in a stronger thermal gradient, which creates convective instability. Hence, the core region is convective for stars above about 1.2 M. [6]

For all masses of stars, as the core hydrogen is consumed, the temperature increases so as to maintain pressure equilibrium. This results in an increasing rate of energy production, which in turn causes the luminosity of the star to increase. The lifetime of the core hydrogen–fusing phase decreases with increasing stellar mass. For a star with the mass of the Sun, this period is around ten billion years. At 5 M the lifetime is 65 million years while at 25 M the core hydrogen–fusing period is only six million years. [7] The longest-lived stars are fully convective red dwarfs, which can stay on the main sequence for hundreds of billions of years or more. [8]

Subgiant stars

Once a star has converted all the hydrogen in its core into helium, the core is no longer able to support itself and begins to collapse. It heats up and becomes hot enough for hydrogen in a shell outside the core to start fusion. The core continues to collapse and the outer layers of the star expand. At this stage, the star is a subgiant. Very-low-mass stars never become subgiants because they are fully convective. [9]

Stars with masses between about 0.4  M and 1 M have small non-convective cores on the main sequence and develop thick hydrogen shells on the subgiant branch. They spend several billion years on the subgiant branch, with the mass of the helium core slowly increasing from the fusion of the hydrogen shell. Eventually, the core becomes degenerate and the star expands onto the red giant branch. [9]

Stars with higher masses have at least partially convective cores while on the main sequence, and they develop a relatively large helium core before exhausting hydrogen throughout the convective region, and possibly in a larger region due to convective overshoot. When core fusion ceases, the core starts to collapse and it is so large that the gravitational energy actually increases the temperature and luminosity of the star for several million years before it becomes hot enough to ignite a hydrogen shell. Once hydrogen starts fusing in the shell, the star cools and it is considered to be a subgiant. When the core of a star is no longer undergoing fusion, but its temperature is maintained by fusion of a surrounding shell, there is a maximum mass called the Schönberg–Chandrasekhar limit. When the mass exceeds that limit, the core collapses, and the outer layers of the star expand rapidly to become a red giant. In stars up to approximately 2 M, this occurs only a few million years after the star becomes a subgiant. Stars more massive than 2 M have cores above the Schönberg–Chandrasekhar limit before they leave the main sequence. [9]

Giant stars

Differences in structure between a star on the main sequence, on the red giant branch, and on the horizontal branch Helium flash.svg
Differences in structure between a star on the main sequence, on the red giant branch, and on the horizontal branch

Once the supply of hydrogen at the core of a low-mass star with at least 0.25 M [8] is depleted, it will leave the main sequence and evolve along the red giant branch of the Hertzsprung–Russell diagram. Those evolving stars with up to about 1.2 M will contract their core until hydrogen begins fusing through the pp chain along with a shell around the inert helium core, passing along the subgiant branch. This process will steadily increase the mass of the helium core, causing the hydrogen-fusing shell to increase in temperature until it can generate energy through the CNO cycle. Due to the temperature sensitivity of the CNO process, this hydrogen fusing shell will be thinner than before. Non-core convecting stars above 1.2 M that have consumed their core hydrogen through the CNO process, contract their cores, and directly evolve into the giant stage. The increasing mass and density of the helium core will cause the star to increase in size and luminosity as it evolves up the red giant branch. [10]

For stars in the mass range 0.4–1.5  M , the helium core becomes degenerate before it is hot enough for helium to start fusion. When the density of the degenerate helium at the core is sufficiently high − at around 107 g cm−3 with a temperature of about 109 K − it undergoes a nuclear explosion known as a "helium flash". This event is not observed outside the star, as the unleashed energy is entirely used up to lift the core from electron degeneracy to normal gas state. The helium fusing core expands, with the density decreasing to about 103 − 104 g cm−3, while the stellar envelope undergoes a contraction. The star is now on the horizontal branch, with the photosphere showing a rapid decrease in luminosity combined with an increase in the effective temperature. [11]

In the more massive main-sequence stars with core convection, the helium produced by fusion becomes mixed throughout the convective zone. Once the core hydrogen is consumed, it is thus effectively exhausted across the entire convection region. At this point, the helium core starts to contract and hydrogen fusion begins along with a shell around the perimeter, which then steadily adds more helium to the inert core. [7] At stellar masses above 2.25 M, the core does not become degenerate before initiating helium fusion. [12] Hence, as the star ages, the core continues to contract and heat up until a triple alpha process can be maintained at the center, fusing helium into carbon. However, most of the energy generated at this stage continues to come from the hydrogen fusing shell. [7]

For stars above 10 M, helium fusion at the core begins immediately as the main sequence comes to an end. Two hydrogen fusing shells are formed around the helium core: a thin CNO cycle inner shell and an outer pp chain shell. [13]

See also

Related Research Articles

<span class="mw-page-title-main">Main sequence</span> Continuous band of stars that appears on plots of stellar color versus brightness

In astronomy, the main sequence is a continuous and distinctive band of stars that appears on plots of stellar color versus brightness. These color-magnitude plots are known as Hertzsprung–Russell diagrams after their co-developers, Ejnar Hertzsprung and Henry Norris Russell. Stars on this band are known as main-sequence stars or dwarf stars. These are the most numerous true stars in the universe and include the Sun.

<span class="mw-page-title-main">Star</span> Large self-illuminated object in space

A star is an astronomical object comprising a luminous spheroid of plasma held together by self-gravity. The nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night; their immense distances from Earth make them appear as fixed points of light. The most prominent stars have been categorised into constellations and asterisms, and many of the brightest stars have proper names. Astronomers have assembled star catalogues that identify the known stars and provide standardized stellar designations. The observable universe contains an estimated 1022 to 1024 stars. Only about 4,000 of these stars are visible to the naked eye—all within the Milky Way galaxy.

<span class="mw-page-title-main">Stellar evolution</span> Changes to stars over their lifespans

Stellar evolution is the process by which a star changes over the course of time. Depending on the mass of the star, its lifetime can range from a few million years for the most massive to trillions of years for the least massive, which is considerably longer than the current age of the universe. The table shows the lifetimes of stars as a function of their masses. All stars are formed from collapsing clouds of gas and dust, often called nebulae or molecular clouds. Over the course of millions of years, these protostars settle down into a state of equilibrium, becoming what is known as a main-sequence star.

<span class="mw-page-title-main">Stellar nucleosynthesis</span> Creation of chemical elements within stars

Stellar nucleosynthesis is the creation (nucleosynthesis) of chemical elements by nuclear fusion reactions within stars. Stellar nucleosynthesis has occurred since the original creation of hydrogen, helium and lithium during the Big Bang. As a predictive theory, it yields accurate estimates of the observed abundances of the elements. It explains why the observed abundances of elements change over time and why some elements and their isotopes are much more abundant than others. The theory was initially proposed by Fred Hoyle in 1946, who later refined it in 1954. Further advances were made, especially to nucleosynthesis by neutron capture of the elements heavier than iron, by Margaret and Geoffrey Burbidge, William Alfred Fowler and Fred Hoyle in their famous 1957 B2FH paper, which became one of the most heavily cited papers in astrophysics history.

<span class="mw-page-title-main">Supergiant</span> Type of star that is massive and luminous

Supergiants are among the most massive and most luminous stars. Supergiant stars occupy the top region of the Hertzsprung–Russell diagram with absolute visual magnitudes between about −3 and −8. The temperature range of supergiant stars spans from about 3,400 K to over 20,000 K.

<span class="mw-page-title-main">Red supergiant</span> Stars with a supergiant luminosity class with a spectral type of K or M

Red supergiants (RSGs) are stars with a supergiant luminosity class of spectral type K or M. They are the largest stars in the universe in terms of volume, although they are not the most massive or luminous. Betelgeuse and Antares A are the brightest and best known red supergiants (RSGs), indeed the only first magnitude red supergiant stars.

<span class="mw-page-title-main">Helium flash</span> Brief thermal runaway nuclear fusion in the core of low mass stars

A helium flash is a very brief thermal runaway nuclear fusion of large quantities of helium into carbon through the triple-alpha process in the core of low mass stars during their red giant phase. A much rarer runaway helium fusion process can also occur on the surface of accreting white dwarf stars.

<span class="mw-page-title-main">Giant star</span> Type of star, larger and brighter than the Sun

A giant star, also simply a giant, is a star with substantially larger radius and luminosity than a main-sequence star of the same surface temperature. They lie above the main sequence on the Hertzsprung–Russell diagram and correspond to luminosity classes II and III. The terms giant and dwarf were coined for stars of quite different luminosity despite similar temperature or spectral type by Ejnar Hertzsprung about 1905.

<span class="mw-page-title-main">Horizontal branch</span> Stage of stellar evolution

The horizontal branch (HB) is a stage of stellar evolution that immediately follows the red-giant branch in stars whose masses are similar to the Sun's. Horizontal-branch stars are powered by helium fusion in the core and by hydrogen fusion in a shell surrounding the core. The onset of core helium fusion at the tip of the red-giant branch causes substantial changes in stellar structure, resulting in an overall reduction in luminosity, some contraction of the stellar envelope, and the surface reaching higher temperatures.

<span class="mw-page-title-main">Stellar structure</span> Structure of stars

Stellar structure models describe the internal structure of a star in detail and make predictions about the luminosity, the color and the future evolution of the star. Different classes and ages of stars have different internal structures, reflecting their elemental makeup and energy transport mechanisms.

<span class="mw-page-title-main">Asymptotic giant branch</span> Stars powered by fusion of hydrogen and helium in shell with an inactive core of carbon and oxygen

The asymptotic giant branch (AGB) is a region of the Hertzsprung–Russell diagram populated by evolved cool luminous stars. This is a period of stellar evolution undertaken by all low- to intermediate-mass stars (about 0.5 to 8 solar masses) late in their lives.

<span class="mw-page-title-main">Convection zone</span> Region of a star which is unstable due to convection

A convection zone, convective zone or convective region of a star is a layer which is unstable due to convection. Energy is primarily or partially transported by convection in such a region. In a radiation zone, energy is transported by radiation and conduction.

<span class="mw-page-title-main">Red-giant branch</span> Portion of the giant branch before helium ignition

The red-giant branch (RGB), sometimes called the first giant branch, is the portion of the giant branch before helium ignition occurs in the course of stellar evolution. It is a stage that follows the main sequence for low- to intermediate-mass stars. Red-giant-branch stars have an inert helium core surrounded by a shell of hydrogen fusing via the CNO cycle. They are K- and M-class stars much larger and more luminous than main-sequence stars of the same temperature.

<span class="mw-page-title-main">Subgiant</span> Type of star larger than main-sequence but smaller than a giant

A subgiant is a star that is brighter than a normal main-sequence star of the same spectral class, but not as bright as giant stars. The term subgiant is applied both to a particular spectral luminosity class and to a stage in the evolution of a star.

<span class="mw-page-title-main">Yellow supergiant</span> Star that has a supergiant luminosity class, with a spectral type of F or G

A yellow supergiant (YSG) is a star, generally of spectral type F or G, having a supergiant luminosity class. They are stars that have evolved away from the main sequence, expanding and becoming more luminous.

<span class="mw-page-title-main">Red giant</span> Type of large cool star that has exhausted its core hydrogen

A red giant is a luminous giant star of low or intermediate mass in a late phase of stellar evolution. The outer atmosphere is inflated and tenuous, making the radius large and the surface temperature around 5,000 K or lower. The appearance of the red giant is from yellow-white to reddish-orange, including the spectral types K and M, sometimes G, but also class S stars and most carbon stars.

Deuterium fusion, also called deuterium burning, is a nuclear fusion reaction that occurs in stars and some substellar objects, in which a deuterium nucleus and a proton combine to form a helium-3 nucleus. It occurs as the second stage of the proton–proton chain reaction, in which a deuterium nucleus formed from two protons fuses with another proton, but can also proceed from primordial deuterium.

<span class="mw-page-title-main">R136a1</span> Wolf–Rayet star with one of the highest mass and luminosity of any known star

R136a1 is one of the most massive and luminous stars known, at 196 M and nearly 4.7 million L, and is also one of the hottest, at around 46,000 K. It is a Wolf–Rayet star at the center of R136, the central concentration of stars of the large NGC 2070 open cluster in the Tarantula Nebula in the Large Magellanic Cloud. The cluster can be seen in the far southern celestial hemisphere with binoculars or a small telescope, at magnitude 7.25. R136a1 itself is 100 times fainter than the cluster and can only be resolved using speckle interferometry.

<span class="mw-page-title-main">O-type star</span> Stellar classification

An O-type star is a hot, blue-white star of spectral type O in the Yerkes classification system employed by astronomers. They have temperatures in excess of 30,000 kelvin (K). Stars of this type have strong absorption lines of ionised helium, strong lines of other ionised elements, and hydrogen and neutral helium lines weaker than spectral type B.

<span class="mw-page-title-main">Blue loop</span> Stage of stellar evolution

In the field of stellar evolution, a blue loop is a stage in the life of an evolved star where it changes from a cool star to a hotter one before cooling again. The name derives from the shape of the evolutionary track on a Hertzsprung–Russell diagram which forms a loop towards the blue side of the diagram.

References

Bibliography