List of multiplanetary systems

Last updated
Number of extrasolar planet discoveries per year through 2023. Colors indicate method of detection.
.mw-parser-output .col-begin{border-collapse:collapse;padding:0;color:inherit;width:100%;border:0;margin:0}.mw-parser-output .col-begin-small{font-size:90%}.mw-parser-output .col-break{vertical-align:top;text-align:left}.mw-parser-output .col-break-2{width:50%}.mw-parser-output .col-break-3{width:33.3%}.mw-parser-output .col-break-4{width:25%}.mw-parser-output .col-break-5{width:20%}@media(max-width:720px){.mw-parser-output .col-begin,.mw-parser-output .col-begin>tbody,.mw-parser-output .col-begin>tbody>tr,.mw-parser-output .col-begin>tbody>tr>td{display:block!important;width:100%!important}.mw-parser-output .col-break{padding-left:0!important}}
.mw-parser-output .legend{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .legend-color{display:inline-block;min-width:1.25em;height:1.25em;line-height:1.25;margin:1px 0;text-align:center;border:1px solid black;background-color:transparent;color:black}.mw-parser-output .legend-text{}
radial velocity
transit
timing
direct detection
microlensing Confirmed exoplanets by methods EPE.svg
Number of extrasolar planet discoveries per year through 2023. Colors indicate method of detection.

From the total of 4,161 stars known to have exoplanets (as of April 1, 2024), there are a total of 896 known multiplanetary systems, [1] or stars with at least two confirmed planets, beyond the Solar System. This list includes systems with at least three confirmed planets or two confirmed planets where additional candidates have been proposed. The stars with the most confirmed planets are the Sun (the Solar System's star) and Kepler-90, with 8 confirmed planets each, followed by TRAPPIST-1 with 7 planets.

Contents

The 896 multiplanetary systems are listed below according to the star's distance from Earth. Proxima Centauri, the closest star to the Solar System, has three planets (b, c and d). The nearest system with four or more confirmed planets is Gliese 876, with four known.[ citation needed ] The farthest confirmed multiplanetary system is OGLE-2012-BLG-0026L, at 13,300 light-years (4,100 pc) away. [2]

The table below contains information about the coordinates, spectral and physical properties, and the number of confirmed (unconfirmed) planets for systems with at least 2 planets and 1 not confirmed. The two most important stellar properties are mass and metallicity because they determine how these planetary systems form. Systems with higher mass and metallicity tend to have more planets and more massive planets. However, although low metallicity stars tend to have fewer massive planets, particularly hot-Jupiters, they also tend to have a larger number of close-in planets, orbiting at less than 1 AU. [3]

Multiplanetary systems

Color indicates number of planets
2 (x)3456789
Star
Constellation
Right
ascension

Declination
Apparent
magnitude

Distance (ly)
Spectral
type

Mass
(M)
Temperature (K)
Age
(Gyr)
Confirmed
(unconfirmed)
planets
Notes
Sun --−26.740.000016G2V157784.5728 (1)The hypothesised Planet Nine remains unconfirmed.
Proxima Centauri Centaurus 14h 29m 42.94853s−62° 40 46.163110.43 to 11.11 [4] 4.244M5.5Ve [5] 0.12230424.852 (1)Closest star to the Sun and closest star to the Sun with a multiplanetary system. Planet b is potentially habitable. [6] [7] Planet c initially appeared likely but has since been disputed. [8]
Lalande 21185 Ursa Major 11h 03m 20.1940s+35° 58 11.56827.520 [9] 8.3044±0.0007M2V0.393601±518.0472 (1)Brightest red dwarf star in the northern celestial hemisphere. [10] [11]
Lacaille 9352 Piscis Austrinus 23h 05m 52.04s−35° 51 11.057.3410.721M0.5V0.4863688±864.572 (1)The unconfirmed planet d is potentially habitable. [12]
Luyten's Star Canis Minor 07h 27m 24.4991s05° 13 32.8279.87211.20M3.5V0.263150unknown2 (2)Stellar activity level and rotational rate suggest an age higher than 8 billion years. [13] Planet b is potentially habitable. [14]
YZ Ceti Cetus 01h 12m 30.64s−16° 59 56.312.0711.74M4.5V0.13305643 (1)Flare star. [15]
Gliese 1061 Horologium 03h 35m 59.69s−44° 30 45.313.0312.04M5.5V0.1132953unknown3Planets c and d are potentially habitable. [16]
Teegarden's Star Aries 02h 53m 00.89s+16° 52 5315.1312.497M7V0.097303483Teegarden's Star b and Teegarden's Star c are likely Earth-mass planets that orbit in the habitable zone. [17]
Wolf 1061 Ophiuchus 16h 30m 18.0584s−12° 39 45.32510.0714.050 ± 0.002M3.5V0.2943342unknown3Planet c is potentially habitable. [18] [19] [20]
Gliese 876 Aquarius 22h 53m 16.73s−14° 15 49.310.1715.25M4V0.33433484.8934Planet b is a gas giant which orbits in the habitable zone. [21]
82 G. Eridani Eridanus 03h 19m 55.65s−43° 04 11.24.25419.71G8V0.754015.763 (3)This star also has a dust disk [22] with a semi-major axis at approximately 19 AU. [23]
Gliese 581 Libra 15h 19m 26.83s−07° 43 20.210.5620.56M3V0.31134844.3263 (2)The unconfirmed planets d and g are potentially habitable. [24]
Gliese 667 C Scorpius 17h 18m 57.16s−34° 59 23.1410.2021M1.5V0.31370022 (1)Triple star system - all exoplanets orbit around Star C. Planet c is potentially habitable, and there are more unconfirmed planets. [25] [26] [27]
HD 219134 Cassiopeia 23h 13m 14.74s57° 10 03.55.5721K3Vvar0.794469912.666Closest star to the Sun with exactly six [28] exoplanets, and closest K-type main sequence star to the Sun with a multiplanetary system. One of the oldest stars with a multiplanetary system, although it is still more metal-rich than the Sun. None of the known planets is in the habitable zone. [29]
61 Virginis Virgo 13h 18m 24.31s−18° 18 40.34.7428G5V0.95455318.962 (1)Planet d remains unconfirmed, [30] and a 2021 study found that it was likely a false positive. [31] 61 Virginis also has a debris disk.
Gliese 433 Hydra 11h 35m 26.9485s−25° 10 08.99.7929.8±0.1M1.5V0.483550±100unknown3An infrared excess around this star suggests a circumstellar disk. [32]
Gliese 357 Hydra 09h 36m 01.6373s−21° 39 38.87810.90630.776M2.5V0.3623488unknown3Planet d is a potentially habitable Super-Earth. [33] [34] [35] [36]
L 98-59 Volans 08h 18m 07.62s−68° 18 46.811.6934.6M3V0.3123412unknown4 (1)The unconfirmed planet f orbits in the habitable zone. [37]
Gliese 414 A Ursa Major 11h 11m 05.88s30° 26 42.618.3138.76K7V0.65412012.42 (0) [38] [39]
Gliese 806 Cygnus 20h 45m 04.099s+44° 29 56.610.7939.3M1.5V0.423358632 (1)-
TRAPPIST-1 Aquarius 23h 06m 29.283s−05° 02 28.5918.8039.5M8V0.08925507.67Planets d, e, f and g are potentially habitable. Only star known with exactly seven confirmed planets. All seven terrestrial planets lie within only 0.07 AU of the star.
55 Cancri Cancer 08h 52m 35.81s+28° 19 50.95.9540K0IV-V1.02652177.45All five known planets orbit around star A (none are circumbinary or orbit around star B). Closest system with exactly five confirmed planets.
Gliese 180 Eridanus 04h 53m 49.9798s−17° 46 24.29410.89440.3M2V [40] or M3V [41] 0.393562unknown3The habitability of planets b and c is disputed. [42] [43]
HD 69830 Puppis 08h 18m 23.95s−12° 37 55.85.9541K0V0.85653857.4463A debris disk exterior to the three exoplanets was detected by the Spitzer Space Telescope in 2005. [44]
HD 40307 Pictor 05h 54m 04.24s−60° 01 24.57.1742K2.5V0.75249771.1984 (2)The existence of planets e and g are disputed. [45] If confirmed, planet g is potentially habitable. [46]
Upsilon Andromedae Andromeda 01h 36m 47.84s+41° 24 19.74.0944F8V1.2761073.7813 (1)Nearest F-type main sequence star with a multiplanetary system. Second-brightest star in the night sky with a multiplanetary system after 7 Canis Majoris. All exoplanets orbit around star A in the binary system.
47 Ursae Majoris Ursa Major 10h 59m 27.97s+40° 25 48.95.1046G0V1.02958927.4343Planet b was discovered in 1996 and was one of the first exoplanets to be discovered. [47] The planet was the first long-period extrasolar planet discovered. The other planets were discovered later. [48]
Nu2 Lupi Lupus 15h 21m 49.57s−48° 19 01.15.6547G2V0.906566410.363One of the oldest stars in the solar neighbourhood. [49] [50] [51]
LHS 1140 Cetus 00h 44m 59.31s−15° 16 16.714.1848.9M4.5V [52] 0.1793216±3952 (1)Planet b is a potentially habitable Super-Earth. [53]
Gliese 163 Dorado 04h 09m 16s−53° 22 2511.849M3.5V0.4unknown35Planet c is possibly a potentially habitable Super-Earth but is probably too hot or massive. [54] [55]
Mu Arae Ara 17h 44m 08.70s−51° 50 02.65.1551G3IV-V1.07757046.4134Planet b orbits in the circumstellar habitable zone. However, it is a gas giant, so it itself is uninhabitable although a large moon orbiting around it may be habitable.
GJ 3929 Corona Borealis 15h 58m 18.8s35° 24 24.312.6751.58M3.5V0.3133384unknown2 (0) [56] [57]
Gliese 676 A Ara 17h 30m 11.2042s−51° 38 13.1169.5953M0V0.71unknownunknown4Held the record for widest range of masses in a planetary system in 2012. [58]
HD 7924 Cassiopeia 01h 21m 59.12s+76° 42 37.07.1955K0V0.8325177unknown3These planets may be potentially habitable Super-Earths. [59]
Pi Mensae Mensa 05h 37m 09.8851s−80° 28 08.83135.6559.62±0.07G0V1.1160133.43Outer planet is likely a brown dwarf. [60]
Gliese 3293 Eridanus 04h 28m 35.72s−25° 10 08.911.9659M2.5V0.423466±49unknown4Planets b and d orbit in the habitable zone. [61]
LHS 1678 Caelum 04h 32m 43s−39° 47 211264.8M2V0.3453490unknown3 (0) [62]
HD 142 Phoenix 00h 06m 19.0s−49° 04 305.7067G1 IV1.161805.933-
HD 215152 Aquarius 22h 43m 21s−06° 24 038.1370G8IV1.01956467.324A debris disk candidate as it has an infrared excess. [63]
HD 164922 Hercules 18h 02m 30.86s+26° 18 46.87.0172G9V [64] 0.874529313.44Oldest star with a multiplanetary system. Despite its age, it is more metal-rich than the Sun. [64]
HD 63433 Gemini 07h 49m 55.0s+27° 21 47.46.9273G5V0.9956400.43
HIP 57274 Ursa Major 11h 44m 41s+30° 57 338.9685K5V0.7346407.873-
HD 39194 Mensa 05h 44m 32s−70° 08 378.0886.2K0Vunknown5205unknown3The planets have eccentric orbits. [65]
LP 791-18 Crater 11h 02m 45.95s−16° 24 22.316.986.9M6V/M7V0.13929600.53
HD 181433 Pavo 19h 25m 09.57s−66° 28 07.78.3887K5V0.77749628.9743-
HD 134606 Apus 15h 15m 15s−70° 31 116.8587G6IVunknownunknownunknown5The planets have moderately eccentric orbits. [66]
HD 158259 Draco 17h 25m 24.0s+52° 47 266.4689G01.08unknownunknown5 (1)A G-type star slightly more massive than the Sun. [67] Planet g remains unconfirmed. [67]
HD 82943 Hydra 09h 34m 50.74s−12° 07 46.46.5490F9V Fe+0.5 [68] 1.17558743.083Planets b and c are in a 2:1 orbital resonance. [69] Planet b orbits in the habitable zone, but it and planet c are massive enough to be brown dwarfs. HD 82943 has an unusual lithium-6 abundance. [70]
Gliese 3138 Cetus 02h 09m 10.90s−16° 20 22.5310.87792.90.6813717±49unknown3
GJ 9827 Pisces 23h 27m 04.84s−01° 17 10.5910.1096.8±0.2K6V0.5934294±52unknown3Also known as K2-135. Planet b is extremely dense, with at least half of its mass being iron. [71]
K2-239 Sextans 10h 42m 22.63s+04° 26 28.8614.5101.5M3V0.43420unknown3
TOI-700 Dorado 06h 28m 22.97s−65° 34 43.0113.10101.61M2V0.41634801.54Planets d and e are potentially habitable. [72] [73] [74]
HD 17926 Fornax 02h 51m 56.16s−30° 48 53.26.38105F6V1.1456201unknown3The star has a red dwarf companion. [75]
HD 37124 Taurus 05h 37m 02.49s+20° 43 50.87.68110G4V0.8356063.3273Planet c orbits at the outer edge of the habitable zone. [76]
HD 20781 Fornax 03h 20m 03s−28° 47 028.44115G9.5V0.75256±29unknown4Located in binary star system. [77] [78]
Kepler-444 Lyra 19h 19m 01s41° 38 059.0117K0V0.758504011.235Nearest multiplanetary system where the planets were discovered by the Kepler space telescope.
HD 141399 Boötes 15h 46m 54.0s+46° 59 117.2118K0V1.075600unknown4Planet c orbits in the habitable zone. [79]
Kepler-42 Cygnus 19h 28m 53s+44° 37 1016.12126M5V [80] 0.133068unknown3-
HD 31527 Lepus 04h 55m 38s−23° 14 317.48126G0Vunknownunknownunknown3-
HD 10180 Hydrus 01h 37m 53.58s−60° 30 41.57.33127G1V1.05559114.3356 (3)Has three unconfirmed candidates. If these candidate exoplanets were confirmed, HD 10180 would have the largest planetary system of any star. [81]
HD 23472 Reticulum 03h 41m 50.3988s−62° 46 01.47729.72127.48K3.5V0.674684±99unknown5
HR 8799 Pegasus 23h 07m 28.72s+21° 08 03.35.96129A5V1.47274290.0644Only A-type main sequence star with a multiplanetary system, and hottest and most massive single main sequence star with a multiplanetary system. All four planets are massive super-Jupiters.
HD 27894 Reticulum 04h 20m 47.05s−59° 24 39.09.42138K2V0.848753.93-
HD 93385 Vela 10h 46m 15.1160s−41° 27 51.72617.486141.6G2V1.0758234.133
K2-3 Leo 11h 29m 20.3918s−01° 27 17.28012.168143.9±0.4M0V0.6013835±7013The outermost planet orbits in the habitable zone. [82]
HD 34445 Orion 05h 17m 41.0s+07° 21 127.31152G0V1.0758368.51 (5)Some planets were not detected or inferred to be false positives in a later study. [83]
HD 204313 Capricornus 21h 28m 12.21s–21° 43 34.57.99154G5V1.04557673.383-
HD 3167 Pisces 00h 34m 57.5s+04° 22 538.97154.4K0V0.852530010.24-
HIP 34269 Puppis 07h 06m 13.98s−47° 35 13.8710.59154.810.744440±100unknown4
HD 133131 Libra 15h 03m 35.80651s−27° 50 27.55208.4168G2V+G2V [84] 0.955799±19632 planets around primary, and 1 planet around secondary star. [84]
K2-136  [ ru ] Taurus 04h 29m 38.99s+22° 52 57.8011.2173K5V0.714364±700.73
HIP 14810 Aries 03h 11m 14.23s+21° 05 50.58.51174G5V0.98954855.2713-
HD 191939 Draco 20h 08m 05.75s+66° 51 2.18.971175G9V0.8153488.76 [85]
HD 125612 Virgo 14h 20m 53.51s−17° 28 53.58.33177G3V1.09958972.153-
HD 184010 Vulpecula 19h 31m 22.0s+26° 37 025.9200KOIII-IV1.3549712.763-
HD 109271 Virgo 12h 33m 36.0s−11° 37 198.05202G51.04757837.32 (1)-
HD 38677 Orion 05h 47m 06.0s−10° 37 49″8.0202F8V1.216196.02.014-
TOI-178 Sculptor 00h 29m 12.30s30° 27 13.4611.95205.16K7V [86] 0.654316±707.16The planets are in an orbital resonance. [86]
HD 108236 Centaurus 12h 26m 17.89s−51° 21 46.219.24211G3V0.9757305.85-
Kepler-37 Lyra 18h 58m 23.1s44° 31 059.77215G8V0.803541763 (1)The existence of Kepler-37e is dubious. [87]
K2-72 Aquarius 22h 18m 29.2548s−09° 36 44.382415.04217M2V0.273497unknown42 planets in habitable zone
Kepler-138 Lyra 19h 21m 32.0s+43° 17 3513.5218.5M1V0.573871unknown3 (1)
K2-233 Libra 15h 21m 55.2s−20° 13 5410.0221K30.849500.363
TOI-1260 Ursa Major 10h 28m 35.03s+65° 51 16.3811.973239.50.664227±856.73
LP 358-499 Taurus 04h 40m 35.64s+25° 00 36.0513.996245.30.463655±80unknown4Also known as K2-133
K2-266 Sextans 10h 31m 44.5s+00° 56 15252K0.6942858.44 (2)
K2-155 Taurus 04h 21m 52.5s+21° 21 1312.8267K70.654258unknown3
K2-384 Cetus 01h 21m 59.86s00° 45 04.4116.12270M?V0.333623±138unknown5
TOI-1136 Draco 12h 48m 44.38 s+64° 51 18.999.534275.81.0225770±500.76
TOI-561 Sextans 09h 52m 44.44s+06° 12 57.9710.252279G9V0.785545554-
Kepler-445 Cygnus 19h 54m 57.0s+46° 29 55182940.183157unknown3-
TOI-763 Centaurus 12h 57m 52.45s−39° 45 27.7110.1563110.91754446.22 (1)-
K2-229 Virgo 12h 27m 29.5848s−06° 43 18.766010.985335K2V0.83751855.43
Kepler-102 Lyra 18h 45m 55.9s+47° 12 2911.492340K3V [88] 0.8148091.415
V1298 Tauri Taurus 04h 05m 19.5912s+20° 09 25.563510.31354K0-1.5 [89] 1.10149700.0234This star is a young T Tauri variable. [90]
K2-302 Aquarius 22h 20m 22.7764s−09° 30 34.293411.98359.3unknown3297±73unknown3
K2-198 Virgo 13h 15m 22.5s−06° 27 5411.03620.85213unknown3
TOI-125 Hydrus 01h 34m 22.73s−66° 40 32.9511.023630.8595320unknown3 (2)
HIP 41378 Cancer 08h 26m 28.0s+10° 04 498.9378F81.156199unknown5 (2)Planet f has an unusually low density, and might have rings or an extended atmosphere. [91] [92] More planets are still suspected. [93]
Kepler-446 Lyra 18h 49m 00.0s+44° 55 1616.5391M4V0.223359unknown3-
HD 33142 Lepus 05h 07m 35.54s−13° 59 11.347.96394.31.525025+24
16
unknown3Host star is a giant star with spectral type of K0III. [94]
K2-148 Cetus 00h 58m 04.28s−00° 11 35.3613.05407K7V0.654079±70unknown3A secondary red dwarf is gravitationally bound to K2-148. [95]
Kepler-68 Cygnus 19h 24m 07.76s+49° 02 25.08.588440G1V1.07957936.33 (1)Planet d, the outermost confirmed planet, is a Jupiter-sized planet which orbits in the habitable zone. [96] Radial velocity measurements discovered an additional signal, which could be a fourth planet or a stellar companion. [97]
HD 28109 Hydrus 04h 20m 57.13s−68° 06 09.519.384571.266120±50unknown3
COROT-7 Monoceros 06h 43m 49.47s−01° 03 46.911.73489K0V0.9352751.53
XO-2 Lynx 07h 48m 07.4814s+50° 13 03.257811.18496±3K0V+K0Vunknownunknown6.34Binary with each star orbited by two planets. [98] [99]
Kepler-411 Cygnus 19h 10m 25.3s+49° 31 2412.5499.4K3V0.834974unknown5
K2-381 Sagittarius 19h 12m 06.46s−21° 00 27.5113.01505K20.7544473±138unknown3
K2-285 Pisces 23h 17m 32.2s+01° 18 0112.03508K2V0.834975unknown4
K2-32 Ophiuchus 16h 49m 42.2602s−19° 32 34.15112.31510G9V0.85652757.95The planets are likely in a 1:2:5:7 orbital resonance. [100]
TOI-1246 Draco 16h 44m 27.96s70° 25 46.7011.65581.125217±50unknown4
K2-352 Cancer 09h 21m 46.8434s+18° 28 10.3471011.12577G2V0.985791unknown3
Kepler-398 Lyra 19h 25m 52.5s+40° 20 38578K5V0.724493unknown3
Kepler-186 Cygnus 19h 54m 36.6s+43° 57 1815.29 [101] 579.23 [102] M1V [103] 0.4783788unknown5Planet f is the first Earth-size exoplanet discovered that orbits in the habitable zone. [104]
K2-37 Scorpius 16h 13m 48.2445s−24° 47 13.427912.52590G3V0.95413unknown3
K2-58 Aquarius 22h 15m 17.2364s−14° 02 59.315112.13596K2V0.895038unknown3
K2-138 Aquarius 23h 15m 47.77s−10° 50 58.9112.21597±55K1V0.935378±602.36Planet g was not fully verified, or could be two long-period planets instead. [105]
K2-38 Scorpius 16h 00m 08.06s−23° 11 21.3311.34630G3V1.035731±66unknown2 (1)Dust disk in system
WASP-47 Aquarius 22h 04m 49.0s−12° 01 0811.9652G9V1.0845400unknown4One planet is a gas giant which orbits in the habitable zone. [106] [107] WASP-47 is the only planetary system known to have both planets near the hot Jupiter and another planet much further out. [108]
K2-368 Aquarius 22h 10m 32.58s−11° 09 58.0213.54674K30.7464663±138unknown3 (1)
HAT-P-13 Ursa Major 08h 39m 31.81s+47° 21 07.310.62698G41.22563852 (1)-
Kepler-19 Cygnus 19h 21m 41s+37° 51 0615.178717G0.93655411.93System consists of a thick-envelope Super-Earth and two Neptune-mass planets. [109]
Kepler-296 Lyra 19h 06m 09.6s+49° 26 14.412.6737.113K7V + M1V [110] unknown4249unknown5All planets orbit around the primary star. [111] Planets e and f are potentially habitable. [111]
Kepler-454 Lyra 19h 09m 55.0s+38° 13 4411.57753G1.02856875.253
Kepler-25 Lyra 19h 06m 33.0s+39° 29 1611799F [112] 1.226190unknown3Two planets were discovered by transit-timing variations, [113] and the third planet was discovered by follow-up radial velocity measurements. [114]
Kepler-114 Cygnus 19h 36m 29.0s+48° 20 5813.7846K0.714450unknown3
Kepler-54 Cygnus 19h 39m 06.0s+43° 03 2316.3886M0.523705unknown3
Kepler-20 Lyra 19h 10m 47.524s42° 20 19.3012.51950G8V0.91254668.86Planets e and f were the first Earth-sized planets to be discovered. [115]
K2-19 Virgo 11h 39m 50.4804s+00° 36 12.877313.002976K0V [116] or G9V [117] 0.9185250±7083-
PSR B1257+12 Virgo 13h 00m 03.58s+12° 40 56.524.31980pulsar1.444288560.7973Only pulsar with a multiplanetary system, and first exoplanets and multiplanetary system to be confirmed. [118] [119] Star with dimmest apparent magnitude to have a multiplanetary system.
Kepler-62 Lyra 18h 52m 51.060s+45° 20 59.50713.75 [120] 990K2V [120] 0.69492575Planets e and f orbit in the habitable zone. [120] [121]
Kepler-48 Cygnus 19h 56m 33.41s+40° 56 56.4713.041000K0.885190unknown5
Kepler-100 Lyra 19h 25m 32.6s+41° 59 241011G1IV1.10958256.54
Kepler-49 Cygnus 19h 29m 11.0s+40° 35 3015.51015K0.553974unknown4
Kepler-65 Lyra 19h 14m 45.3s+41° 09 04.211.0181019F6IV1.1996211unknown4-
Kepler-52 Draco 19h 06m 57.0s+49° 58 3315.51049K0.584075unknown3
K2-314 Libra 15h 13m 00.0s−16° 43 2911.41059G8IV/V1.05543093
K2-219 Pisces 00h 51m 22.9s+08° 52 0412.091071G21.025753±50unknown3
K2-268 Cancer 08h 54m 50.2862s+11° 50 53.774513.851079unknownunknownunknown5
K2-183 Cancer 08h 20m 01.7184s14° 01 10.071112.851083unknown5482±50unknown3
K2-187 Cancer 08h 50m 05.6682s23° 11 33.371212.8641090G?V0.9675438±63unknown4
Kepler-1542 Lyra 19h 02m 54.8s+42° 39 161096G5V0.945564unknown4-
Kepler-26 Lyra 18h 59m 46s+46° 34 00161100M0V0.654500unknown4Transiting exoplanets [122] which are low-density planets below the size of Neptune. [123] [124]
Kepler-167 Cygnus 19h 30m 38.0s+38° 20 431119 ± 60.764796unknown4
Kepler-81 Cygnus 19h 34m 32.9s+42° 49 3015.561136K?V0.6484391unknown3
Kepler-132 Lyra 18h 52m 56.6s+41° 20 351140F90.986003unknown4
Kepler-80 Cygnus 19h 44m 27.0s+39° 58 4414.8041218M0V [125] 0.734250unknown6Red dwarf star with six confirmed planets. [126] [127] Five of them are in an orbital resonance. [128] [127]
Kepler-159 Cygnus 19h 48m 16.8s+40° 52 081219K0.634625unknown2 (1)Star has a very low metallicity.
K2-299 Aquarius 22h 05m 06.5342s−14° 07 18.013513.121220unknown5724±72unknown3
Kepler-88 Lyra 19h 24m 35.5431s+40° 40 09.809813.51243G8IV1.0225513±672.453
Kepler-174 Lyra 19h 09m 45.4s+43° 49:561269Kunknown4880unknown3Planet d may orbit in the habitable zone.
Kepler-32 Cygnus 19h 51m 22.0s+46° 34 27161301.1M1V0.583900unknown3 (2)-
Kepler-83 Lyra 18h 48m 55.8s+43° 39 5616.511306K7V0.6644164unknown3
TOI-1338 Pictor 06h 08m 31.97s+59° 32 28.111.721318F8
M
1.12761604.42 (0)
Kepler-271 Lyra 18h 52m 00.7s+44° 17 031319G7V0.95524unknown3Metal-poor star
Kepler-169 19h 03m 60.0s+40° 55:1012.1861326K2V0.864997unknown5
Kepler-451 Cygnus 19h 38m 32.61s46° 03 59.11340 sdB
M
0.62956463Three circumbinary planets orbit around the Kepler-451 binary pair. [129]
Kepler-304 Cygnus 19h 37m 46.0s+40° 33 271418K0.84731unknown4
Kepler-18 Cygnus 19h 52m 19.06s+44° 44 46.7613.5491430G7V0.975345103
Kepler-106 Cygnus 20h 03m 27.4s+44° 20 1512.8821449G1V158584.834
Kepler-92 Lyra 19h 16m 21.0s+41° 33 4711.61463G1IV1.20958715.523
Kepler-450 Cygnus 19h 41m 56.8s+51° 00 4911.6841487F1.196152unknown3
Kepler-89 Cygnus 19h 49m 20.0s+41° 53 2812.41580F8V1.2561163.94Farthest F-type main sequence star from the Sun with a multiplanetary system. One study found hints of additional planets orbiting Kepler-89. [130]
Kepler-1388 Lyra 18h 53m 20.6s+47° 10 2816040.634098unknown4-
K2-282 Pisces 00h 53m 43.6833s07° 59 43.139714.041638G?V0.945499±109unknown3
Kepler-107 Cygnus 19h 48m 06.8s+48° 12 3112.71714G2V [131] 1.23858514.294-
Kepler-1047 Cygnus 19h 14m 35.1s+50° 47 201846G2V1.085754unknown3-
Kepler-55 Lyra 19h 00m 40.0s+44° 01 3516.31888K0.624362unknown5Planet c may orbit in the inner habitable zone.
Kepler-166 Cygnus 19h 32m 38.4s+48° 52 521968G0.885413unknown3
Kepler-11 Cygnus 19h 48m 27.62s+41° 54 32.913.692150 ±20G6V [132] 0.95456817.8346Farthest star from the Sun with exactly six exoplanets. First system discovered with six transiting planets. [132] The planets have low densities. [133]
Kepler-1254 Draco 19h 34m 59.3s+45° 06 2622050.784985unknown3-
Kepler-289 Cygnus 19h 49m 51.7s+42° 52 5812.92283G0V1.0859900.653-
Kepler-85 Cygnus 19h 23m 54.0s+45° 17 2515.02495G0.925666unknown4
Kepler-157 Lyra 19h 24m 23.3s+38° 52 322523G2V1.025774unknown3
Kepler-342 Cygnus 19h 24m 23.3s+38° 52 322549F1.136175unknown4
Kepler-148 Cygnus 19h 19m 08.7s+46° 51 322580K?V0.835019.0±122.0unknown3
Kepler-51 Cygnus 19h 45m 55.0s+49° 56 1615.02610G?V15803unknown3Super-puff planets with some of the lowest densities known. [134]
Kepler-403 Cygnus 19h 19m 41.1s+46° 44 402741F9IV-V1.256090unknown3
Kepler-9 Lyra 19h 02m 17.76s+38° 24 03.213.912754G2V0.99857223.0083First multiplanetary system to discovered by the Kepler Space Telescope. [135] [136]
Kepler-23 Cygnus 19h 36m 52.0s+49° 28 45142790G5V1.115760unknown3-
Kepler-46 Cygnus 19h 17m 05.0s+42° 36 1515.32795K?V0.90251559.93-
Kepler-305 Cygnus 19h 56m 53.83s+40° 20 35.4615.8122833K0.854918unknown3 (1)
Kepler-90 Draco 18h 57m 44.0s+49° 18 1914.02840 ± 40G0V1.13593028All eight exoplanets are larger than Earth and are within 1.1 AU of the parent star. Only star apart from the Sun with at least eight planets. [137] A Hill stability test shows that the system is stable. [138] Planet h orbits in the habitable zone.
Kepler-150 Lyra 19h 12m 56.2s+40° 31 152906G?V0.975560unknown5Planet f orbits in the habitable zone.
Kepler-82 Cygnus 19h 31m 29.61s+42° 57 58.0915.1582949G?V0.915512unknown4
Kepler-154 Cygnus 19h 19m 07.3s+49° 53 482985G3V0.985690unknown5
Kepler-56 Cygnus 19h 35m 02.0s+41° 52 19133060K?III1.3248403.53
Kepler-350 Lyra 19h 01m 41.0s+39° 42 2213.83121F1.036215unknown3
Kepler-603 Cygnus 19h 37m 07.4s+42° 17 273134G2V1.015808unknown3-
Kepler-160 Lyra 19h 11m 05.65s+42° 52 09.513.1013140G2Vunknown5470unknown3 (1)The unconfirmed planet Kepler-160e (or KOI-456.04) is a potentially habitable planet. [139]
Kepler-401 Cygnus 19h 20m 19.9s+50° 51 493149F8V1.176117unknown3
Kepler-58 Cygnus 19h 45m 26.0s+39° 06 5515.33161G1V1.045843unknown3
Kepler-79 Cygnus 20h 02m 04.11s+44° 22 53.6913.9143329F1.176187unknown4
Kepler-60 Cygnus 19h 15m 50.70s+42° 15 54.0413.9593343G1.045915unknown3
Kepler-122 19h 24m 26.9s+39° 56 573351F1.086050unknown4
Kepler-279 Lyra 19h 09m 34.0s+42° 11 4213.73383F1.16562unknown3
Kepler-255 Cygnus 19h 44m 15.4s+45° 58 373433G6V0.95573unknown3
Kepler-47 Cygnus 19h 41m 11.5s+46° 55 13.6915.1783442G
M
1.0435636(A)
(B is unknown)
4.53Circumbinary planets, with one of the planets orbiting in the habitable zone. [140] [141] [142]
Kepler-292 19h 43m 03.84s+43° 25 27.413.973446K0V0.855299unknown5
Kepler-27 Cygnus 19h 28m 56.82s+41° 05 9.1515.8553500G5V0.655400unknown3
Kepler-351 Lyra 19h 05m 48.6s+42° 39 283535G?V0.895643unknown3
Kepler-276 Cygnus 19h 34m 16s+39° 02 1115.3683734G?V1.15812unknown3
Kepler-24 Lyra 19h 21m 39.18s+38° 20 37.5114.9253910G1V1.035800unknown4-
Kepler-87 Cygnus 19h 51m 40.0s+46° 57 54154021G4IV1.156007.52 (2)Farthest system from the Sun with an unconfirmed exoplanet candidate.
Kepler-33 Lyra 19h 16m 18.61s+46° 00 18.813.9884090G1IV1.16458494.275
Kepler-282 Lyra 18h 58m 43.0s+44° 47 5115.24363G?V0.975876unknown4
Kepler-758 Cygnus 19h 32m 20.3s+41° 08 0844131.166228unknown4Farthest system from the Sun with exactly four confirmed exoplanets.
Kepler-53 Lyra 19h 21m 51.0s+40° 33 45164455G?V0.985858unknown3
Kepler-30 Lyra 19h 01m 08.07s+38° 56 50.2115.4034560G6V0.995498unknown3
Kepler-84 Cygnus 19h 53m 00.49s+40° 29 45.8714.7644700G3IV15755unknown5
Kepler-385 Cygnus 19h 37m 21.23s+50° 20 11.5515.764900F8V0.995835unknown3 (4)
Kepler-31 Cygnus 19h 36m 06.0s+45° 51 1115.55429F1.216340unknown3The three planets are in an orbital resonance. [143]
Kepler-238 Lyra 19h 11m 35s+40° 38 1615.0845867G5IV1.065614unknown5One of the farthest systems from the Sun with a multiplanetary system, and the farthest system where exoplanets were discovered by the Kepler space telescope.
Kepler-245 Cygnus 19h 26m 33.4s+42° 26 110.85100unknown4
Kepler-218 Cygnus 19h 41m 39.1s+46° 15 59unknown5502unknown3
Kepler-217 Cygnus 19h 32m 09.1s+46° 16 39unknown6171unknown3
Kepler-192 Lyra 19h 11m 40.3s+45° 35 34unknown5479unknown3
Kepler-191 Cygnus 19h 24m 44.0s+45° 19 230.855282unknown3
Kepler-176 Cygnus 19h 38m 40.3s+43° 51 12unknown5232unknown4
Kepler-431 Lyra 18h 44m 26.9s+43° 13 401.0716004unknown3
Kepler-338 Lyra 18h 51m 54.9s+40° 47 041.15923unknown4
Kepler-197 Cygnus 19h 40m 54.3s+50° 33 32unknown6004unknown4
Kepler-247 Lyra 19h 14m 34.2s+43° 02 210.8845094unknown3
Kepler-104 Lyra 19h 10m 25.1s+42° 10 000.815711unknown3-
Kepler-126 Cygnus 19h 17m 23.4s+44° 12 31unknown6239unknown3-
Kepler-127 Lyra 19h 00m 45.6s+46° 01 41unknown6106unknown3-
Kepler-130 Lyra 19h 13m 48.2s+40° 14 4315884unknown3-
Kepler-164 Lyra 19h 11m 07.4s+47° 37 481.115888unknown3-
Kepler-171 Cygnus 19h 47m 05.3s+41° 45 20unknown5642unknown3-
Kepler-172 Lyra 19h 47m 05.3s+41° 45 200.865526unknown4-
Kepler-149 Lyra 19h 03m 24.9s+38° 23 03unknown5381unknown3
Kepler-142 Cygnus 19h 40m 28.5s+48° 28 530.995790unknown3
Kepler-124 Draco 19h 07m 00.7s+49° 03 54unknown4984unknown3
Kepler-402 Lyra 19h 13m 28.9s+43° 21 17unknown6090unknown4
Kepler-399 Cygnus 19h 58m 00.4s+40° 40 15unknown5502unknown3
Kepler-374 Cygnus 19h 36m 33.1s+42° 22 140.845977unknown3
Kepler-372 Cygnus 19h 25m 01.5s+49° 15 321.156509unknown3
Kepler-363 Lyra 18h 52m 46.1s+41° 18 191.235593unknown3
Kepler-359 Cygnus 19h 33m 10.5s+42° 11 471.076248unknown3
Kepler-357 Cygnus 19h 24m 58.3s+44° 00 310.785036unknown3
Kepler-354 Lyra 19h 03m 00.4s+41° 20 080.654648unknown3
Kepler-206 Lyra 19h 26m 32.3s+41° 50 020.945764unknown3
Kepler-203 Cygnus 19h 01m 23.3s+41° 45 430.985821unknown3
Kepler-194 Cygnus 19h 27m 53.1s+47° 51 51unknown6089unknown3
Kepler-184 Lyra 19h 27m 48.5s+43° 04 29unknown5788unknown3
Kepler-178 Lyra 19h 08m 24.3s+46° 53 47unknown5676unknown3
Kepler-336 Lyra 19h 20m 57.0s+41° 19 530.895867unknown3
Kepler-334 Lyra 19h 08m 33.8s+47° 06 5515828unknown3
Kepler-332 Lyra 19h 06m 39.1s+47° 24 490.84955unknown3
Kepler-331 Lyra 19h 27m 20.2s+39° 18 260.514347unknown3
Kepler-327 Cygnus 19h 30m 34.2s44° 05 160.553799unknown3
Kepler-326 Cygnus 19h 37m 18.1s+46° 00 080.985105unknown3
Kepler-325 Cygnus 19h 19m 20.5s+49° 49 320.875752unknown3

Stars orbited by both planets and brown dwarfs

Stars orbited by objects on both sides of the 13 Jupiter mass dividing line.

See also

For links to specific lists of exoplanets see:

Online archives:


Related Research Articles

Gliese 674(GJ 674) is a small red dwarf star with an exoplanetary companion in the southern constellation of Ara. It is too faint to be visible to the naked eye, having an apparent visual magnitude of 9.38 and an absolute magnitude of 11.09. The system is located at a distance of 14.8 light-years from the Sun based on parallax measurements, but is drifting closer with a radial velocity of −2.9 km/s. It is a candidate member of the 200 million year old Castor stream of co-moving stars.

Gliese 180, is a small red dwarf star in the equatorial constellation of Eridanus. It is invisible to the naked eye with an apparent visual magnitude of 10.9. The star is located at a distance of 39 light years from the Sun based on parallax, and is drifting closer with a radial velocity of −14.6 km/s. It has a high proper motion, traversing the sky at the rate of 0.765 arcseconds per year.

<span class="mw-page-title-main">GJ 3470 b</span> Hot Neptune orbiting GJ 3470

GJ 3470 b is an exoplanet orbiting the star GJ 3470, located in the constellation Cancer. With a mass of just under 14 Earth-masses and a radius approximately 4.3 times that of Earth's, it is likely something akin to Neptune despite the initially strong belief that the planet was not covered in clouds like the gas giants in the Solar System.

GJ 9827 is a star in the constellation of Pisces. It is a K-type main-sequence star with an apparent magnitude of 10.250. It is 97 light-years away, based on parallax.

<span class="mw-page-title-main">Gliese 357</span> Red dwarf with low starspot activity in the Hydra constellation

GJ 357 is an M-type main sequence star with an unusually low starspot activity. It is located 31 light-years from the Solar System. The system is part of the Hydra constellation.

References

  1. Schneider, Jean (6 December 2016). "Interactive Extra-solar Planets Catalog". Extrasolar Planets Encyclopaedia . Archived from the original on 2016-12-09. Retrieved 2016-12-06.
  2. Beaulieu, Jean-Philippe; Bennett, D. P.; Batista, Virginie; Fukui, A. (January 2016). "Revisiting the microlensing event OGLE 2012-BLG-0026: A solar mass star with two cold giant planets". researchgate.net.
  3. Brewer, John M.; Wang, Songhu; Fischer, Debra A.; Foreman-Mackey, Daniel (2018-10-24). "Compact multi-planet systems are more common around metal poor hosts". The Astrophysical Journal. 867 (1). L3. arXiv: 1810.10009 . Bibcode:2018ApJ...867L...3B. doi: 10.3847/2041-8213/aae710 . S2CID   67832557.
  4. Samus, N. N.; Durlevich, O. V.; et al. (2009). "VizieR online data catalog: General catalogue of variable stars (Samus+ 2007–2013)". VizieR On-line Data Catalog: B/GCVS. Originally Published in: 2009yCat....102025S. 1. Bibcode:2009yCat....102025S.
  5. Bessell, M. S. (1991). "The late-M dwarfs". The Astronomical Journal. 101: 662. Bibcode:1991AJ....101..662B. doi: 10.1086/115714 .
  6. Mascareño, A. Suárez; Faria, J. P.; Figueira, P.; Lovis, C.; Damasso, M.; Hernández, J. I. González; Rebolo, R.; Cristiani, S.; Pepe, F.; Santos, N. C.; Osorio, M. R. Zapatero; Adibekyan, V.; Hojjatpanah, S.; Sozzetti, A.; Murgas, F.; Abreu, M.; Affolter, M.; Alibert, Y.; Aliverti, M.; Allart, R.; Prieto, C. Allende; Alves, D.; Amate, M.; Avila, G.; Baldini, V.; Bandi, T.; Barros, S. C. C.; Bianco, A.; Benz, W.; Bouchy, F.; Broeng, C.; Cabral, A.; Calderone, G.; Cirami, R.; Coelho, J.; Conconi, P.; Coretti, I.; Cumani, C.; Cupani, G.; D’Odorico, V.; Deiries, S.; Delabre, B.; Marcantonio, P. Di; Dumusque, X.; Ehrenreich, D.; Fragoso, A.; Genolet, L.; Genoni, M.; Santos, R. Génova; Hughes, I.; Iwert, O.; Kerber, F.; Knusdstrup, J.; Landoni, M.; Lavie, B.; Lillo-Box, J.; Lizon, J.; Curto, G. Lo; Maire, C.; Manescau, A.; Martins, C. J. a. P.; Mégevand, D.; Mehner, A.; Micela, G.; Modigliani, A.; Molaro, P.; Monteiro, M. A.; Monteiro, M. J. P. F. G.; Moschetti, M.; Mueller, E.; Nunes, N. J.; Oggioni, L.; Oliveira, A.; Pallé, E.; Pariani, G.; Pasquini, L.; Poretti, E.; Rasilla, J. L.; Redaelli, E.; Riva, M.; Tschudi, S. Santana; Santin, P.; Santos, P.; Segovia, A.; Sosnowska, D.; Sousa, S.; Spanò, P.; Tenegi, F.; Udry, S.; Zanutta, A.; Zerbi, F. (1 July 2020). "Revisiting Proxima with ESPRESSO". Astronomy & Astrophysics. 639: A77. arXiv: 2005.12114 . Bibcode:2020A&A...639A..77S. doi:10.1051/0004-6361/202037745. ISSN   0004-6361. S2CID   218869742. Archived from the original on 27 June 2022. Retrieved 9 May 2022.
  7. Del Genio, Anthony D.; Way, Michael J.; Amundsen, David S.; Aleinov, Igor; Kelley, Maxwell; Kiang, Nancy Y.; Clune, Thomas L. (January 2019). "Habitable Climate Scenarios for Proxima Centauri b with a Dynamic Ocean". Astrobiology. 19 (1): 99–125. arXiv: 1709.02051 . Bibcode:2019AsBio..19...99D. doi:10.1089/ast.2017.1760. ISSN   1531-1074. PMID   30183335. S2CID   52165056.
  8. Artigau, Étienne; Cadieux, Charles; Cook, Neil J.; Doyon, René; Vandal, Thomas; et al. (June 23, 2022). "Line-by-line velocity measurements, an outlier-resistant method for precision velocimetry". The Astronomical Journal. 164:84 (3) (published August 8, 2022): 18pp. arXiv: 2207.13524 . Bibcode:2022AJ....164...84A. doi: 10.3847/1538-3881/ac7ce6 .
  9. Oja, T. (August 1985), "Photoelectric photometry of stars near the north Galactic pole. II", Astronomy and Astrophysics Supplement Series, 61: 331–339, Bibcode:1985A&AS...61..331O
  10. Dickinson, David (2015-12-23). "14 Red Dwarf Stars to View with Backyard Telescopes". Universe Today. Archived from the original on 2021-02-11. Retrieved 2016-12-04.
  11. Croswell, Ken (July 2002). "The Brightest Red Dwarf". KenCroswell.com. Archived from the original on 2018-10-20. Retrieved 2016-12-04.
  12. Jeffers, S. V.; Dreizler, S.; Barnes, J. R.; Haswell, C. A.; Nelson, R. P.; Rodríguez, E.; López-González, M. J.; Morales, N.; Luque, R.; et al. (2020), "A multiple planet system of super-Earths orbiting the brightest red dwarf star GJ887", Science, 368 (6498): 1477–1481, arXiv: 2006.16372 , Bibcode:2020Sci...368.1477J, doi:10.1126/science.aaz0795, PMID   32587019, S2CID   220075207
  13. Pozuelos, Francisco J.; Suárez, Juan C.; de Elía, Gonzalo C.; Berdiñas, Zaira M.; Bonfanti, Andrea; Dugaro, Agustín; et al. (2020). "GJ 273: On the formation, dynamical evolution, and habitability of a planetary system hosted by an M dwarf at 3.75 parsec". Astronomy & Astrophysics. 641: A23. arXiv: 2006.09403 . Bibcode:2020A&A...641A..23P. doi:10.1051/0004-6361/202038047. S2CID   219721292. GJ 273 is a planetary system orbiting an M dwarf only 3.75 pc away, composed of two confirmed planets, GJ 273b and GJ 273c, and two promising candidates, GJ 273d and GJ 273e ... the system remained stable only for values of inclinations ranging from 90◦ to ~72◦
  14. Astudillo-Defru, Nicola; Forveille, Thierry; Bonfils, Xavier; Ségransan, Damien; Bouchy, François; Delfosse, Xavier; et al. (2017). "The HARPS search for southern extra-solar planets. XLI. A dozen planets around the M dwarfs GJ 3138, GJ 3323, GJ 273, GJ 628, and GJ 3293". Astronomy and Astrophysics. 602. A88. arXiv: 1703.05386 . Bibcode:2017A&A...602A..88A. doi:10.1051/0004-6361/201630153. S2CID   119418595. Archived from the original on 2022-09-28. Retrieved 2022-02-25.
  15. Samus, N. N.; Durlevich, O. V.; et al. (2009). "VizieR Online Data Catalog: General Catalogue of Variable Stars (Samus+ 2007-2013)". VizieR On-line Data Catalog: B/GCVS. Originally Published in: 2009yCat....102025S. 1. Bibcode:2009yCat....102025S.
  16. Dreizler, S.; Jeffers, S. V.; Rodríguez, E.; Zechmeister, M.; Barnes, J.R.; Haswell, C.A.; Coleman, G. A. L.; Lalitha, S.; Hidalgo Soto, D.; Strachan, J.B.P.; Hambsch, F-J.; López-González, M. J.; Morales, N.; Rodríguez López, C.; Berdiñas, Z. M.; Ribas, I.; Pallé, E.; Reiners, Ansgar; Anglada-Escudé, G. (2019-08-13). "Red Dots: A temperate 1.5 Earth-mass planet in a compact multi-terrestrial planet system around GJ1061". Monthly Notices of the Royal Astronomical Society . arXiv: 1908.04717 . doi:10.1093/mnras/staa248. S2CID   199551874.
  17. Caballero, J. A.; Reiners, Ansgar; Ribas, I.; Dreizler, S.; Zechmeister, M.; et al. (12 June 2019). "The CARMENES search for exoplanets around M dwarfs. Two temperate Earth-mass planet candidates around Teegarden's Star". Astronomy & Astrophysics. 627: A49. arXiv: 1906.07196 . Bibcode:2019A&A...627A..49Z. doi: 10.1051/0004-6361/201935460 . ISSN   0004-6361. S2CID   189999121.
  18. Davison, Cassy L.; White, Russel J.; Henry, Todd J.; Riedel, Adric R.; Jao, Wei-Chun; Bailey III, John I.; Quinn, Samuel N.; Justin R., Cantrell; John P., Subasavage; Jen G., Winters (2015). "A 3D Search for Companions to 12 Nearby M-Dwarfs". The Astronomical Journal. 149 (3): 106. arXiv: 1501.05012 . Bibcode:2015AJ....149..106D. doi:10.1088/0004-6256/149/3/106. S2CID   9719725.
  19. Stuart Gary (17 December 2015). "Potentially habitable super-Earth discovered orbiting star 14 light years from Earth". ABC News (Australia). Archived from the original on 2017-06-09. Retrieved 2022-05-10.
  20. Kane, Stephen R.; et al. (February 2017), "Characterization of the Wolf 1061 Planetary System", The Astrophysical Journal, 835 (2): 9, arXiv: 1612.09324 , Bibcode:2017ApJ...835..200K, doi: 10.3847/1538-4357/835/2/200 , S2CID   30738573, 200.
  21. Jones, Barrie W.; et al. (2005). "Prospects for Habitable "Earths" in Known Exoplanetary Systems". The Astrophysical Journal. 622 (2): 1091–1101. arXiv: astro-ph/0503178 . Bibcode: 2005ApJ...622.1091J . doi: 10.1086/428108 .
  22. Wyatt, M. C.; et al. (2012). "Herschel imaging of 61 Vir: implications for the prevalence of debris in low-mass planetary systems". Monthly Notices of the Royal Astronomical Society . 424 (2): 1206. arXiv: 1206.2370 . Bibcode:2012MNRAS.424.1206W. doi:10.1111/j.1365-2966.2012.21298.x. S2CID   54056835.
  23. Kennedy, G. M.; Matra, L.; Marmier, M.; Greaves, J. S.; Wyatt, M. C.; Bryden, G.; Holland, W.; Lovis, C.; Matthews, B. C.; Pepe, F.; Sibthorpe, B.; Udry, S. (2015). "Kuiper belt structure around nearby super-Earth host stars". Monthly Notices of the Royal Astronomical Society. 449 (3): 3121. arXiv: 1503.02073 . Bibcode:2015MNRAS.449.3121K. doi:10.1093/mnras/stv511. S2CID   53638901.
  24. "Reanalysis of data suggests 'habitable' planet GJ 581d really could exist". Astronomy Now . 9 March 2015. Archived from the original on 20 May 2015. Retrieved 27 May 2015.
  25. Anglada-Escudé, Guillem; Arriagada, Pamela; Vogt, Steven S.; Rivera, Eugenio J.; Butler, R. Paul; Crane, Jeffrey D.; Shectman, Stephen A.; Thompson, Ian B.; Minniti, Dante; Haghighipour, Nader; Carter, Brad D.; Tinney, C. G.; Wittenmyer, Robert A.; Bailey, Jeremy A.; O'Toole, Simon J.; Jones, Hugh R. A.; Jenkins, James S. (2012). "A Planetary System around the nearby M Dwarf GJ 667C with At Least One Super-Earth in Its Habitable Zone". The Astrophysical Journal Letters. 751 (1). L16. arXiv: 1202.0446 . Bibcode:2012ApJ...751L..16A. doi:10.1088/2041-8205/751/1/L16. S2CID   16531923.
  26. Anglada-Escudé, Guillem; et al. (2013-06-07). "A dynamically-packed planetary system around GJ 667C with three super-Earths in its habitable zone" (PDF). Astronomy & Astrophysics . 556: A126. arXiv: 1306.6074 . Bibcode:2013A&A...556A.126A. doi:10.1051/0004-6361/201321331. S2CID   14559800. Archived from the original (PDF) on 2013-06-30. Retrieved 2013-06-25.
  27. Makarov, Valeri V.; Berghea, Ciprian (2013). "Dynamical Evolution and Spin-Orbit Resonances of Potentially Habitable Exoplanets. The Case of Gj 667C". The Astrophysical Journal. 780 (2): 124. arXiv: 1311.4831 . doi:10.1088/0004-637X/780/2/124. S2CID   118700510.
  28. Vogt, Steven S.; et al. (November 2015). "Six Planets Orbiting HD 219134". The Astrophysical Journal . 814 (1): 12. arXiv: 1509.07912 . Bibcode:2015ApJ...814...12V. doi:10.1088/0004-637X/814/1/12. S2CID   45438051.
  29. Dietrich, Jeremy; Apai, Dániel; Malhotra, Renu (2022). "An Integrative Analysis of the HD 219134 Planetary System and the Inner solar system: Extending DYNAMITE with Enhanced Orbital Dynamical Stability Criteria". The Astronomical Journal. 163 (2): 88. arXiv: 2112.05337 . Bibcode:2022AJ....163...88D. doi: 10.3847/1538-3881/ac4166 . S2CID   245117944.
  30. Wyatt, M. C.; et al. (2012). "Herschel imaging of 61 Vir: implications for the prevalence of debris in low-mass planetary systems". MNRAS. 424 (2): 1206–1223. arXiv: 1206.2370 . Bibcode:2012MNRAS.424.1206W. doi:10.1111/j.1365-2966.2012.21298.x. S2CID   54056835.
  31. Rosenthal, Lee J.; Fulton, Benjamin J.; Hirsch, Lea A.; Isaacson, Howard T.; Howard, Andrew W.; Dedrick, Cayla M.; Sherstyuk, Ilya A.; Blunt, Sarah C.; Petigura, Erik A.; Knutson, Heather A.; Behmard, Aida; Chontos, Ashley; Crepp, Justin R.; Crossfield, Ian J. M.; Dalba, Paul A.; Fischer, Debra A.; Henry, Gregory W.; Kane, Stephen R.; Kosiarek, Molly; Marcy, Geoffrey W.; Rubenzahl, Ryan A.; Weiss, Lauren M.; Wright, Jason T. (2021). "The California Legacy Survey. I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades". The Astrophysical Journal Supplement Series. 255 (1): 8. arXiv: 2105.11583 . Bibcode:2021ApJS..255....8R. doi: 10.3847/1538-4365/abe23c . S2CID   235186973.
  32. Kennedy, G. M.; et al. (June 2018). "Kuiper belt analogues in nearby M-type planet-host systems". Monthly Notices of the Royal Astronomical Society. 476 (4): 4584–4591. arXiv: 1803.02832 . Bibcode:2018MNRAS.476.4584K. doi:10.1093/mnras/sty492.
  33. Falconer, Rebecca, Newly uncovered super-Earth 31 light-years away may be habitable Archived 2019-12-18 at the Wayback Machine , Axios, August 1, 2019
  34. Reddy, Francis; Center, NASA’s Goddard Space Flight (2019-07-31). "TESS Discovers Habitable Zone Planet in GJ 357 System". SciTechDaily. Archived from the original on 2019-08-01. Retrieved 2019-08-01.
  35. "Potentially habitable 'super-Earth' discovered just 31 light-years away". NBC News. 31 July 2019. Archived from the original on 2019-07-31. Retrieved 2019-08-01.
  36. Garner, Rob (2019-07-30). "NASA's TESS Helps Find Intriguing New World". NASA. Archived from the original on 2019-08-01. Retrieved 2019-08-01.
  37. Demangeon, Oliver D. S.; Zapatero Osorio, M. R.; Alibert, Y.; Barros, S. C. C.; Adibekyan, V.; Tabernero, H. M.; et al. (July 2021). "A warm terrestrial planet with half the mass of Venus transiting a nearby star" (PDF). Astronomy & Astrophysics. 653: 38. arXiv: 2108.03323 . Bibcode:2021A&A...653A..41D. doi:10.1051/0004-6361/202140728. S2CID   236957385. Archived (PDF) from the original on 2021-11-13. Retrieved 2022-03-03.
  38. Dedrick, Cayla M.; Fulton, Benjamin J.; Knutson, Heather A.; Howard, Andrew W.; Beatty, Thomas G.; Cargile, Phillip A.; Gaudi, B. Scott; Hirsch, Lea A.; Kuhn, Rudolf B.; Lund, Michael B.; James, David J.; Kosiarek, Molly R.; Pepper, Joshua; Petigura, Erik A.; Rodriguez, Joseph E. (January 2021). "Two Planets Straddling the Habitable Zone of the Nearby K Dwarf Gl 414A". The Astronomical Journal. 161 (2): 86. arXiv: 2009.06503 . Bibcode:2021AJ....161...86D. doi: 10.3847/1538-3881/abd0ef . ISSN   1538-3881.
  39. "GJ 414 Overview". NASA Exoplanet Archive. Archived from the original on December 9, 2023. Retrieved January 4, 2024.
  40. Schweitzer, A.; et al. (May 2019). "The CARMENES search for exoplanets around M dwarfs. Different roads to radii and masses of the target stars". Astronomy & Astrophysics. 625: 16. arXiv: 1904.03231 . Bibcode:2019A&A...625A..68S. doi:10.1051/0004-6361/201834965. S2CID   102351979. A68.
  41. Stephenson, C. B. (July 1986), "Dwarf K and M stars of high proper motion found in a hemispheric survey", The Astronomical Journal , 92: 139–165, Bibcode:1986AJ.....92..139S, doi: 10.1086/114146 .
  42. Sutherland, Paul (March 5, 2014). "Habitable planets common around red dwarf stars". Sen. Sen Corporation Ltd. Archived from the original on November 12, 2020. Retrieved July 28, 2022.
  43. Tuomi, Mikko; et al. (2014), "Bayesian search for low-mass planets around nearby M dwarfs – estimates for occurrence rate based on global detectability statistics", Monthly Notices of the Royal Astronomical Society, 441 (2): 1545–1569, arXiv: 1403.0430 , Bibcode:2014MNRAS.441.1545T, doi:10.1093/mnras/stu358, S2CID   32965505.
  44. Lovis, Christophe; et al. (2006). "An extrasolar planetary system with three Neptune-mass planets" (PDF). Nature. 441 (7091): 305–309. arXiv: astro-ph/0703024 . Bibcode:2006Natur.441..305L. doi:10.1038/nature04828. PMID   16710412. S2CID   4343578. Archived from the original (PDF) on 2016-03-03. Retrieved 2022-02-24.
  45. Díaz, R. F.; et al. (2016). "The HARPS search for southern extra-solar planets. XXXVIII. Bayesian re-analysis of three systems. New super-Earths, unconfirmed signals, and magnetic cycles". Astronomy and Astrophysics. 585. A134. arXiv: 1510.06446 . Bibcode:2016A&A...585A.134D. doi:10.1051/0004-6361/201526729. S2CID   118531921. Archived from the original on 2021-02-24. Retrieved 2022-02-24.
  46. Tuomi, Mikko; Anglada-Escudé, Guillem; Gerlach, Enrico; Jones, Hugh R. A.; Reiners, Ansgar; Rivera, Eugenio J.; Vogt, Steven S.; Butler, R. Paul (17 December 2012). "Habitable-zone super-Earth candidate in a six-planet system around the K2.5V star HD 40307". Astronomy & Astrophysics. 549: A48. arXiv: 1211.1617 . Bibcode:2013A&A...549A..48T. doi:10.1051/0004-6361/201220268. S2CID   7424216.
  47. R. P. Butler; Marcy, Geoffrey W. (1996). "A Planet Orbiting 47 Ursae Majoris". Astrophysical Journal Letters . 464 (2): L153–L156. Bibcode:1996ApJ...464L.153B. doi: 10.1086/310102 .
  48. P. C. Gregory; D. A. Fischer (2010). "A Bayesian periodogram finds evidence for three planets in 47 Ursae Majoris". Monthly Notices of the Royal Astronomical Society . 403 (2): 731–747. arXiv: 1003.5549 . Bibcode:2010MNRAS.403..731G. doi:10.1111/j.1365-2966.2009.16233.x. S2CID   16722873.
  49. Takeda, Genya; et al. (2007). "Structure and Evolution of Nearby Stars with Planets. II. Physical Properties of ~1000 Cool Stars from the SPOCS Catalog". The Astrophysical Journal Supplement Series. 168 (2): 297–318. arXiv: astro-ph/0607235 . Bibcode:2007ApJS..168..297T. doi:10.1086/509763. S2CID   18775378.
  50. Sousa, S. G.; et al. (August 2008). "Spectroscopic parameters for 451 stars in the HARPS GTO planet search program. Stellar [Fe/H] and the frequency of exo-Neptunes". Astronomy and Astrophysics. 487 (1): 373–381. arXiv: 0805.4826 . Bibcode:2008A&A...487..373S. doi:10.1051/0004-6361:200809698. S2CID   18173201.
  51. Lovis, C.; et al. (2011). "The HARPS search for southern extra-solar planets. XXXI. Magnetic activity cycles in solar-type stars: statistics and impact on precise radial velocities". arXiv: 1107.5325 [astro-ph.SR].
  52. Dittmann, Jason A.; Irwin, Jonathan M.; Charbonneau, David; Bonfils, Xavier; Astudillo-Defru, Nicola; Haywood, Raphaëlle D.; et al. (2017). "A temperate rocky super-Earth transiting a nearby cool star". Nature. 544 (7650): 333–336. arXiv: 1704.05556 . Bibcode:2017Natur.544..333D. doi:10.1038/nature22055. PMID   28426003. S2CID   2718408.
  53. Overbye, Dennis (19 April 2017). "A new exoplanet may be most promising yet in search for life". New York Times . Archived from the original on 11 November 2020. Retrieved 20 April 2017.
  54. Méndez, Abel (August 29, 2012). "A Hot Potential Habitable Exoplanet around Gliese 163". University of Puerto Rico at Arecibo (Planetary Habitability Laboratory). Archived from the original on October 21, 2019. Retrieved September 20, 2012.
  55. Redd, Nola Taylor (September 20, 2012). "Newfound Alien Planet a Top Contender to Host Life". Space.com. Archived from the original on December 26, 2019. Retrieved September 20, 2012.
  56. "Simbad - Object view". simbad.cds.unistra.fr. Retrieved 2024-01-04.
  57. Beard, Corey; Robertson, Paul; Kanodia, Shubham; Lubin, Jack; Cañas, Caleb I.; Gupta, Arvind F.; Holcomb, Rae; Jones, Sinclaire; Libby-Roberts, Jessica E.; Lin, Andrea S. J.; Mahadevan, Suvrath; Stefánsson, Guđmundur; Bender, Chad F.; Blake, Cullen H.; Cochran, William D. (2022-08-30). "GJ 3929: High-precision Photometric and Doppler Characterization of an Exo-Venus and Its Hot, Mini-Neptune-mass Companion". The Astrophysical Journal. 936 (1): 55. arXiv: 2207.10672 . Bibcode:2022ApJ...936...55B. doi: 10.3847/1538-4357/ac8480 . ISSN   0004-637X.
  58. Anglada-Escudé, Guillem; Tuomi, Mikko (2012). "A planetary system with gas giants and super-Earths around the nearby M dwarf GJ 676A. Optimizing data analysis techniques for the detection of multi-planetary systems" (PDF). Astronomy. 548: A58. arXiv: 1206.7118 . Bibcode:2012A&A...548A..58A. doi:10.1051/0004-6361/201219910. S2CID   17115882.[ permanent dead link ]
  59. Fulton, Benjamin J.; et al. (2015). "Three Super-Earths Orbiting HD 7924". The Astrophysical Journal. 805 (2): 175. arXiv: 1504.06629 . Bibcode:2015ApJ...805..175F. doi:10.1088/0004-637X/805/2/175. S2CID   7969255.
  60. Damasso, M.; et al. (2020), "A precise architecture characterization of the π Mensae planetary system", Astronomy & Astrophysics, 642: A31, arXiv: 2007.06410 , Bibcode:2020A&A...642A..31D, doi:10.1051/0004-6361/202038416, S2CID   220496034
  61. Astudillo-Defru, Nicola; Forveille, Thierry; Bonfils, Xavier; Ségransan, Damien; Bouchy, François; Delfosse, Xavier; et al. (2017). "The HARPS search for southern extra-solar planets. XLI. A dozen planets around the M dwarfs GJ 3138, GJ 3323, GJ 273, GJ 628, and GJ 3293". Astronomy and Astrophysics. 602. A88. arXiv: 1703.05386 . Bibcode:2017A&A...602A..88A. doi:10.1051/0004-6361/201630153. S2CID   119418595. Archived from the original on 2022-09-28. Retrieved 2022-02-25.
  62. https://exoplanet.eu/catalog/lhs_1678_d--8971/
  63. Koerner, D. W.; et al. (February 2010), "New Debris Disk Candidates Around 49 Nearby Stars" (PDF), The Astrophysical Journal Letters, 710 (1): L26–L29, Bibcode:2010ApJ...710L..26K, doi:10.1088/2041-8205/710/1/L26, S2CID   122844702, archived (PDF) from the original on 2020-09-15, retrieved 2022-02-25.
  64. 1 2 Fulton, Benjamin J.; Howard, Andrew W.; Weiss, Lauren M.; Sinukoff, Evan; Petigura, Erik A.; Isaacson, Howard; Hirsch, Lea; Marcy, Geoffrey W.; Henry, Gregory W.; Grunblatt, Samuel K.; Huber, Daniel; Kaspar von Braun; Boyajian, Tabetha S.; Kane, Stephen R.; Wittrock, Justin; Horch, Elliott P.; Ciardi, David R.; Howell, Steve B.; Wright, Jason T.; Ford, Eric B. (2016). "Three Temperate Neptunes Orbiting Nearby Stars". The Astrophysical Journal. 830 (1): 46. arXiv: 1607.00007 . Bibcode:2016ApJ...830...46F. doi: 10.3847/0004-637X/830/1/46 . S2CID   36666883.
  65. Unger, N.; et al. (October 2021). "The HARPS search for southern extra-solar planets". Astronomy & Astrophysics. 654: A104. arXiv: 2108.10198 . Bibcode:2021A&A...654A.104U. doi: 10.1051/0004-6361/202141351 . eISSN   1432-0746. ISSN   0004-6361.
  66. Mayor, M.; Marmier, M.; Lovis, C.; Udry, S.; Ségransan, D.; Pepe, F.; Benz, W.; Bertaux, J.-L.; Bouchy, F.; Dumusque, X.; Lo Curto, G.; Mordasini, C.; Queloz, D.; Santos, N. C. (September 13, 2011), The HARPS search for southern extra-solar planets XXXIV. Occurrence, mass distribution and orbital properties of super-Earths and Neptune-mass planets, arXiv: 1109.2497
  67. 1 2 Hara, N. C.; Bouchy, F.; Stalport, M.; Boisse, I.; Rodrigues, J.; Delisle, J. B.; Santerne, A.; Henry, G. W.; Arnold, L.; Astudillo-Defru, N.; Borgniet, S.; Bonfils, X.; Bourrier, V.; Brugger, B.; Courcol, B.; Dalal, S.; Deleuil, M.; Delfosse, X.; Demangeon, O.; Díaz, R. F.; Dumusque, X.; Forveille, T.; Hébrard, G.; Hobson, M. J.; Kiefer, F.; Lopez, T.; Mignon, L.; Mousis, O.; Moutou, C.; Pepe, F.; Rey, J.; Santos, N. C.; Ségransan, D.; Udry, S.; Wilson, P. A. (March 10, 2020). "The SOPHIE search for northern extrasolar planets XVI. HD 158259: A compact planetary system in a near-3:2 mean motion resonance chain". Astronomy & Astrophysics. 636 (1): L6. arXiv: 1911.13296 . Bibcode:2020A&A...636L...6H. doi:10.1051/0004-6361/201937254. S2CID   208512859.
  68. Gray, R. O.; et al. (July 2006), "Contributions to the Nearby Stars (NStars) Project: spectroscopy of stars earlier than M0 within 40 pc-The Southern Sample", The Astronomical Journal , 132 (1): 161–170, arXiv: astro-ph/0603770 , Bibcode:2006AJ....132..161G, doi:10.1086/504637, S2CID   119476992
  69. Lee, Man Hoi; et al. (2006). "On the 2:1 Orbital Resonance in the HD 82943 Planetary System". The Astrophysical Journal. 641 (2): 1178–1187. arXiv: astro-ph/0512551 . Bibcode:2006ApJ...641.1178L. doi:10.1086/500566. S2CID   119432579.
  70. "The Harsh Destiny of a Planet?" (Press release). Garching, Germany: European Southern Observatory. May 9, 2001. Archived from the original on September 21, 2020. Retrieved December 30, 2012.
  71. Rodriguez, Joseph E; Vanderburg, Andrew; Eastman, Jason D; Mann, Andrew W; Crossfield, Ian J. M; Ciardi, David R; Latham, David W; Quinn, Samuel N (2018). "A System of Three Super Earths Transiting the Late K-Dwarf GJ 9827 at 30 pc". The Astronomical Journal. 155 (2): 72. arXiv: 1709.01957 . Bibcode:2018AJ....155...72R. doi: 10.3847/1538-3881/aaa292 . S2CID   55459523.
  72. Andreolo, Claire; Cofield, Calla; Kazmierczak, Jeanette (6 January 2020). "NASA Planet Hunter Finds Earth-Size Habitable-Zone World". NASA . Archived from the original on 14 April 2020. Retrieved 6 January 2020.
  73. Garner, Rob (6 January 2020). "NASA Planet Hunter Finds Earth-Size Habitable-Zone World". NASA . Archived from the original on 5 April 2020. Retrieved 6 January 2020.
  74. Wall, Mike (6 January 2020). "NASA's TESS Planet Hunter Finds Its 1st Earth-Size World in 'Habitable Zone'". Space.com . Archived from the original on 8 April 2020. Retrieved 6 January 2020.
  75. Vanderburg, Andrew; et al. (2019). "TESS Spots a Compact System of Super-Earths around the Naked-Eye Star HR 858". The Astrophysical Journal. 881 (1): L19. arXiv: 1905.05193 . Bibcode:2019ApJ...881L..19V. doi: 10.3847/2041-8213/ab322d . S2CID   153311715.
  76. Vogt, Steven S.; et al. (2005). "Five New Multicomponent Planetary Systems" (PDF). The Astrophysical Journal. 632 (1): 638–658. Bibcode:2005ApJ...632..638V. doi:10.1086/432901. S2CID   16509245. Archived (PDF) from the original on 2018-07-22. Retrieved 2020-12-11.
  77. Udry, S.; Dumusque, X.; Lovis, C.; Segransan, D.; Diaz, R. F.; Benz, W.; Bouchy, F.; Coffinet, A.; Lo Curto, G.; Mayor, M.; Mordasini, C.; Motalebi, F.; Pepe, F.; Queloz, D.; Santos, N. C.; Wyttenbach, A.; Alonso, R.; Collier Cameron, A.; Deleuil, M.; Figueira, P.; Gillon, M.; Moutou, C.; Pollacco, D.; Pompei, E. (2019), "The HARPS search for southern extra-solar planets. XLII. Eight HARPS multi-planet systems hosting 20 super-Earth and Neptune-mass companions", Astronomy & Astrophysics, A37: 622, arXiv: 1705.05153 , Bibcode:2019A&A...622A..37U, doi:10.1051/0004-6361/201731173, S2CID   119095511
  78. Mayor, M.; Marmier, M.; Lovis, C.; Udry, S.; Ségransan, D.; Pepe, F.; Benz, W.; Bertaux, J.-L.; Bouchy, F.; Dumusque, G.; Curto, Lo; Mordasini, C.; Queloz, D.; Santos, N. C.; et al. (2011). "The HARPS search for southern extra-solar planets XXXIV. Occurrence, mass distribution and orbital properties of super-Earths and Neptune-mass planets". arXiv: 1109.2497 [astro-ph].
  79. Hébrard, Guillaume; Arnold, Luc; Forveille, Thierry; Correia, Alexandre C. M.; Laskar, Jacques; Bonfils, Xavier; Boisse, Isabelle; Díaz, Rodrigo F.; Hagelberg, Janis; Sahlmann, Johannes; Santos, Nuno C.; et al. (2016-04-01). "The SOPHIE search for northern extrasolar planets. X. Detection and characterization of giant planets by the dozen". Astronomy and Astrophysics. 588: A145. arXiv: 1602.04622 . Bibcode:2016A&A...588A.145H. doi:10.1051/0004-6361/201527585. ISSN   0004-6361. S2CID   55138055. Archived from the original on 2019-04-10. Retrieved 2022-02-26.
  80. Philip S. Muirhead; John Asher Johnson; Kevin Apps; Joshua A. Carter; Timothy D. Morton; Daniel C. Fabrycky; J. Sebastian Pineda; Michael Bottom; Barbara Rojas-Ayala; Everett Schlawin; Katherine Hamren; Kevin R. Covey; Justin R. Crepp; Keivan G. Stassun; Joshua Pepper; Leslie Hebb; Evan N. Kirby; Andrew W. Howard; Howard T. Isaacson; Geoffrey W. Marcy; David Levitan; Tanio Diaz-Santos; Lee Armus; James P. Lloyd (2012). "Characterizing the Cool KOIs III. KOI-961: A Small Star with Large Proper Motion and Three Small Planets". The Astrophysical Journal. 747 (2): 144. arXiv: 1201.2189 . Bibcode:2012ApJ...747..144M. doi:10.1088/0004-637X/747/2/144. S2CID   14889361.
  81. Tuomi, Mikko (6 April 2012). "Evidence for 9 planets in the 10180 system". Astronomy & Astrophysics. 543: A52. arXiv: 1204.1254v1 . Bibcode:2012A&A...543A..52T. doi:10.1051/0004-6361/201118518. S2CID   15876919.
  82. "Three Super-Earths Found Circling Nearby Red Dwarf". Archived from the original on 2019-01-02. Retrieved 2022-02-27.
  83. Rosenthal, Lee J.; Fulton, Benjamin J.; Hirsch, Lea A.; Isaacson, Howard T.; Howard, Andrew W.; Dedrick, Cayla M.; Sherstyuk, Ilya A.; Blunt, Sarah C.; Petigura, Erik A.; Knutson, Heather A.; Behmard, Aida; Chontos, Ashley; Crepp, Justin R.; Crossfield, Ian J. M.; Dalba, Paul A.; Fischer, Debra A.; Henry, Gregory W.; Kane, Stephen R.; Kosiarek, Molly; Marcy, Geoffrey W.; Rubenzahl, Ryan A.; Weiss, Lauren M.; Wright, Jason T. (2021). "The California Legacy Survey. I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades". The Astrophysical Journal Supplement Series. 255 (1): 8. arXiv: 2105.11583 . Bibcode:2021ApJS..255....8R. doi: 10.3847/1538-4365/abe23c . S2CID   235186973.
  84. 1 2 Teske, Johanna K; Shectman, Stephen A; Vogt, Steve S; Díaz, Matías; Butler, R. Paul; Crane, Jeffrey D; Thompson, Ian B; Arriagada, Pamela (2016). "The Magellan PFS Planet Search Program: Radial Velocity and Stellar Abundance Analyses of the 360 AU, Metal-Poor Binary "Twins" HD 133131A & B". The Astronomical Journal. 152 (6): 167. arXiv: 1608.06216 . Bibcode:2016AJ....152..167T. doi: 10.3847/0004-6256/152/6/167 . S2CID   118852162.
  85. Orell-Miquel, J.; Nowak, G.; Murgas, F.; Palle, E.; Morello, G.; Luque, R.; Badenas-Agusti, M.; Ribas, I.; Lafarga, M.; Espinoza, N.; Morales, J. C.; Zechmeister, M.; Alqasim, A.; Cochran, W. D.; Gandolfi, D.; Goffo, E.; Kabáth, P.; Korth, J.; Livingston, J.; Lam, K. W. F.; Muresan, A.; Persson, C. M.; Van Eylen, V. (2023). "HD 191939 revisited: New and refined planet mass determinations, and a new planet in the habitable zone". Astronomy & Astrophysics. 669: A40. arXiv: 2211.00667 . Bibcode:2023A&A...669A..40O. doi:10.1051/0004-6361/202244120. S2CID   253197272.
  86. 1 2 Leleu, A.; Alibert, Y.; Hara, N. C.; Hooton, M. J.; Wilson, T. G.; Robutel, P.; Delisle, J.-B.; Laskar, J.; Hoyer, S.; Lovis, C.; Bryant, E. M.; Ducrot, E.; Cabrera, J.; Delrez, L.; Acton, J. S.; Adibekyan, V.; Allart, R.; Prieto, Allende; Alonso, R.; Alves, D.; et al. (2021-01-20). "Six transiting planets and a chain of Laplace resonances in TOI-178". Astronomy & Astrophysics. 649: A26. arXiv: 2101.09260 . Bibcode:2021A&A...649A..26L. doi:10.1051/0004-6361/202039767. ISSN   0004-6361. S2CID   231693292.
  87. Rajpaul, V. M.; Buchhave, L. A.; Lacedelli, G.; Rice, K.; Mortier, A.; Malavolta, L.; Aigrain, S.; Borsato, L.; Mayo, A. W.; Charbonneau, D.; Damasso, M.; Dumusque, X.; Ghedina, A.; Latham, D. W.; López-Morales, M.; Magazzù, A.; Micela, G.; Molinari, E.; Pepe, F.; Piotto, G.; Poretti, E.; Rowther, S.; Sozzetti, A.; Udry, S.; Watson, C. A. (2021), "A HARPS-N mass for the elusive Kepler-37d: A case study in disentangling stellar activity and planetary signals", Monthly Notices of the Royal Astronomical Society, 507 (2): 1847–1868, arXiv: 2107.13900 , Bibcode:2021MNRAS.507.1847R, doi:10.1093/mnras/stab2192 Kepler-37e is discussed in sections 2.2.2 & 6.4.
  88. "KOI-82". SIMBAD . Centre de données astronomiques de Strasbourg . Retrieved 20 March 2022.
  89. David, Trevor J.; Cody, Ann Marie; Hedges, Christina L.; Mamajek, Eric E.; Hillenbrand, Lynne A.; Ciardi, David R.; Beichman, Charles A.; Petigura, Erik A.; Fulton, Benjamin J.; Isaacson, Howard T.; Howard, Andrew W. (August 2019). "A Warm Jupiter-sized Planet Transiting the Pre-main-sequence Star V1298 Tau". The Astronomical Journal. 158 (2): 79. arXiv: 1902.09670 . Bibcode:2019AJ....158...79D. doi: 10.3847/1538-3881/ab290f . ISSN   0004-6256. S2CID   119003936.
  90. David, Trevor J.; Petigura, Erik A.; Luger, Rodrigo; Foreman-Mackey, Daniel; Livingston, John H.; Mamajek, Eric E.; Hillenbrand, Lynne A. (2019-10-29). "Four Newborn Planets Transiting the Young Solar Analog V1298 Tau". The Astrophysical Journal. 885 (1): L12. arXiv: 1910.04563 . Bibcode:2019ApJ...885L..12D. doi: 10.3847/2041-8213/ab4c99 . ISSN   2041-8213. S2CID   204008446.
  91. Akinsanmi, B.; Santos, N. C.; Faria, J. P.; Oshagh, M.; Barros, S. C. C.; Santerne, A.; Charnoz, S. (2020-03-01). "Can planetary rings explain the extremely low density of HIP 41378 𝑓?". Astronomy & Astrophysics. 635: L8. arXiv: 2002.11422 . doi: 10.1051/0004-6361/202037618 . ISSN   0004-6361. Archived from the original on 2021-10-28. Retrieved 2022-03-19.
  92. Santerne, A.; Malavolta, L.; Kosiarek, M. R.; Dai, F.; Dressing, C. D.; Dumusque, X.; Hara, N. C.; Lopez, T. A.; Mortier, A.; Vanderburg, A.; Adibekyan, V.; Armstrong, D. J.; Barrado, D.; Barros, S. C. C.; Bayliss, D.; Berardo, D.; Boisse, I.; Bonomo, A. S.; Bouchy, F.; Brown, D. J. A.; Buchhave, L. A.; Butler, R. P.; Collier Cameron, A.; Cosentino, R.; Crane, J. D.; Crossfield, I. J. M.; Damasso, M.; Deleuil, M. R.; Delgado Mena, E.; et al. (2019). "An extremely low-density and temperate giant exoplanet". arXiv: 1911.07355 [astro-ph.EP].
  93. Andrew Vanderburg; et al. (2016). "Five Planets Transiting a Ninth Magnitude Star". The Astrophysical Journal. 827 (1): L10. arXiv: 1606.08441 . Bibcode:2016ApJ...827L..10V. doi: 10.3847/2041-8205/827/1/L10 . S2CID   8794583.
  94. Martin, Pierre-Yves (2022). "Planet HD 33142 c". exoplanet.eu. Archived from the original on 2024-02-03. Retrieved 2024-02-03.
  95. Hirano, Teruyuki; Dai, Fei; Gandolfi, Davide; Fukui, Akihiko; Livingston, John H.; Miyakawa, Kohei; Endl, Michael; Cochran, William D.; Alonso-Floriano, Francisco J.; Kuzuhara, Masayuki; Montes, David; Ryu, Tsuguru; Albrecht, Simon; Barragan, Oscar; Cabrera, Juan; Csizmadia, Szilard; Deeg, Hans; Eigmüller, Philipp; Erikson, Anders; Fridlund, Malcolm; Grziwa, Sascha; Guenther, Eike W.; Hatzes, Artie P.; Korth, Judith; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Narita, Norio; Nespral, David; Nowak, Grzegorz; et al. (2018). "Exoplanets around Low-mass Stars Unveiled by K2". The Astronomical Journal. 155 (3): 127. arXiv: 1710.03239 . Bibcode:2018AJ....155..127H. doi: 10.3847/1538-3881/aaa9c1 . S2CID   54590874.
  96. Gilliland, Ronald L.; et al. (2013). "Kepler-68: Three Planets, One with a Density Between That of Earth and Ice Giants". The Astrophysical Journal. 766 (1). 40. arXiv: 1302.2596 . Bibcode: 2013ApJ...766...40G . doi: 10.1088/0004-637X/766/1/40 .
  97. Mills, Sean M.; et al. (2019). "Long-period Giant Companions to Three Compact, Multiplanet Systems". The Astronomical Journal. 157 (4). 145. arXiv: 1903.07186 . Bibcode:2019AJ....157..145M. doi: 10.3847/1538-3881/ab0899 . S2CID   119197547.
  98. Desidera, S.; et al. (2014). "The GAPS programme with HARPS-N at TNG. IV. A planetary system around XO-2S". Astronomy and Astrophysics. 567 (6). L6. arXiv: 1407.0251 . Bibcode:2014A&A...567L...6D. doi:10.1051/0004-6361/201424339. S2CID   118567085. Archived from the original on 2021-05-11. Retrieved 2022-06-25.
  99. Damasso, M.; et al. (2015). "A comprehensive analysis of the XO-2 stellar and planetary systems". Astronomy & Astrophysics. 575. A111. arXiv: 1501.01424 . doi: 10.1051/0004-6361/201425332 .
  100. Heller, René; Rodenbeck, Kai; Hippke, Michael (2019). "Transit least-squares survey. I. Discovery and validation of an Earth-sized planet in the four-planet system K2-32 near the 1:2:5:7 resonance". Astronomy and Astrophysics. 625. A31. arXiv: 1904.00651 . Bibcode: 2019A&A...625A..31H . doi: 10.1051/0004-6361/201935276 . Archived from the original on 2022-01-25. Retrieved 2022-03-04.
  101. Souto, Diogo; et al. (2017). "Chemical Abundances of M-dwarfs from the APOGEE Survey. I. The Exoplanet Hosting Stars Kepler-138 and Kepler-186". The Astrophysical Journal. 835 (2): 239. arXiv: 1612.01598 . Bibcode:2017ApJ...835..239S. doi: 10.3847/1538-4357/835/2/239 . S2CID   73634716.
  102. Bailer-Jones, C. A. L.; et al. (August 2018). "Estimating distances from parallaxes IV: Distances to 1.33 billion stars in Gaia Data Release 2". The Astronomical Journal. 156 (2): 58. arXiv: 1804.10121 . Bibcode:2018AJ....156...58B. doi: 10.3847/1538-3881/aacb21 . S2CID   119289017.  Distance to Kepler 186, after taking into account light extinction Archived 2022-05-11 at the Wayback Machine
  103. "Kepler-186 f". NASA Exoplanet Archive. Archived from the original on 18 March 2022. Retrieved 19 July 2016.
  104. Quintana, E. V.; Barclay, T.; Raymond, S. N.; Rowe, J. F.; Bolmont, E.; Caldwell, D. A.; Howell, S. B.; Kane, S. R.; Huber, D.; Crepp, J. R.; Lissauer, J. J.; Ciardi, D. R.; Coughlin, J. L.; Everett, M. E.; Henze, C. E.; Horch, E.; Isaacson, H.; Ford, E. B.; Adams, F. C.; Still, M.; Hunter, R. C.; Quarles, B.; Selsis, F. (2014-04-18). "An Earth-Sized Planet in the Habitable Zone of a Cool Star". Science . 344 (6181): 277–280. arXiv: 1404.5667 . Bibcode:2014Sci...344..277Q. doi:10.1126/science.1249403. PMID   24744370. S2CID   1892595. free version = http://www.nasa.gov/sites/default/files/files/kepler186_main_final.pdf Archived 2014-04-18 at the Wayback Machine
  105. Christiansen, Jessie L.; Crossfield, Ian J. M.; Barentsen, Geert; Lintott, Chris J.; Barclay, Thomas; Simmons, Brooke D.; Petigura, Erik; Schlieder, Joshua E.; Dressing, Courtney D.; Vanderburg, Andrew; Ciardi, David R.; Allen, Campbell; McMaster, Adam; Miller, Grant; Veldthuis, Martin; Allen, Sarah; Wolfenbarger, Zach; Cox, Brian; Zemiro, Julia; Howard, Andrew W.; Livingston, John; Sinukoff, Evan; Catron, Timothy; Grey, Andrew; Kusch, Joshua J. E.; Terentev, Ivan; Vales, Martin; Kristiansen, Martti H. (2018-01-11). "The K2-138 System: A Near-resonant Chain of Five Sub-Neptune Planets Discovered by Citizen Scientists". The Astronomical Journal. 155 (2): 57. arXiv: 1801.03874 . Bibcode:2018AJ....155...57C. doi: 10.3847/1538-3881/aa9be0 . ISSN   1538-3881. S2CID   52971376.
  106. Becker, Juliette C.; Vanderburg, Andrew; Adams, Fred C.; Rappaport, Saul A.; Schwengeler, Hans Martin (2015-10-12). "Wasp-47: A Hot Jupiter System with Two Additional Planets Discovered by K2". The Astrophysical Journal. 812 (2): L18. arXiv: 1508.02411 . Bibcode:2015ApJ...812L..18B. doi:10.1088/2041-8205/812/2/L18. ISSN   2041-8213. S2CID   14681933.
  107. Neveu-VanMalle, M.; et al. (2016). "Hot Jupiters with relatives: Discovery of additional planets in orbit around WASP-41 and WASP-47". Astronomy and Astrophysics. 586. A93. arXiv: 1509.07750 . Bibcode:2016A&A...586A..93N. doi:10.1051/0004-6361/201526965. S2CID   53354547. Archived from the original on 2022-02-28. Retrieved 2022-05-08.
  108. "WASP-47". exoplanetarchive.ipac.caltech.edu. Archived from the original on 2022-05-08. Retrieved 2022-05-08.
  109. Malavolta, Luca; et al. (2017). "The Kepler-19 System: A Thick-envelope Super-Earth with Two Neptune-mass Companions Characterized Using Radial Velocities and Transit Timing Variations". The Astronomical Journal. 153 (5). 224. arXiv: 1703.06885 . Bibcode: 2017AJ....153..224M . doi: 10.3847/1538-3881/aa6897 .
  110. Lissauer, Jack J; Marcy, Geoffrey W; Bryson, Stephen T; Rowe, Jason F; Jontof-Hutter, Daniel; Agol, Eric; Borucki, William J; Carter, Joshua A; Ford, Eric B; Gilliland, Ronald L; Kolbl, Rea; Star, Kimberly M; Steffen, Jason H; Torres, Guillermo (2014). "Validation Of Kepler's Multiple Planet Candidates. Ii. Refined Statistical Framework and Descriptions of Systems of Special Interest". The Astrophysical Journal. 784 (1): 44. arXiv: 1402.6352 . Bibcode:2014ApJ...784...44L. doi:10.1088/0004-637X/784/1/44. S2CID   119108651.
  111. 1 2 Barclay, Thomas; Quintana, Elisa V; Adams, Fred C; Ciardi, David R; Huber, Daniel; Foreman-Mackey, Daniel; Montet, Benjamin T; Caldwell, Douglas (2015). "The Five Planets in the Kepler-296 Binary System All Orbit the Primary: A Statistical and Analytical Analysis". The Astrophysical Journal. 809 (1): 7. arXiv: 1505.01845 . Bibcode:2015ApJ...809....7B. doi:10.1088/0004-637X/809/1/7. S2CID   37742564.
  112. Schneider, Jean, "Star: Kepler-25", Extrasolar Planets Encyclopaedia , archived from the original on 2012-06-16, retrieved 2013-12-18
  113. Steffen, Jason H.; et al. (2012). "Transit timing observations from Kepler - III. Confirmation of four multiple planet systems by a Fourier-domain study of anticorrelated transit timing variations". Monthly Notices of the Royal Astronomical Society. 421 (3): 2342–2354. arXiv: 1201.5412 . Bibcode: 2012MNRAS.421.2342S . doi: 10.1111/j.1365-2966.2012.20467.x .
  114. Marcy, Geoffrey W.; et al. (2014). "Masses, Radii, and Orbits of Small Kepler Planets: The Transition from Gaseous to Rocky Planets". The Astrophysical Journal Supplement Series. 210 (2). 20. arXiv: 1401.4195 . Bibcode: 2014ApJS..210...20M . doi: 10.1088/0067-0049/210/2/20 .
  115. Hand, Eric (20 December 2011). "Kepler discovers first Earth-sized exoplanets". Nature . doi:10.1038/nature.2011.9688. S2CID   122575277.
  116. Nespral, D.; et al. (2017). "Mass determination of K2-19b and K2-19c from radial velocities and transit timing variations". Astronomy and Astrophysics. 601. A128. arXiv: 1604.01265 . Bibcode:2017A&A...601A.128N. doi:10.1051/0004-6361/201628639. S2CID   55978628. Archived from the original on 2022-05-04. Retrieved 2022-03-18.
  117. Sinukoff, Evan; et al. (2016). "Eleven Multiplanet Systems From K2 Campaigns 1 and 2 and the Masses of Two Hot Super-Earths". The Astrophysical Journal. 827 (1). 78. arXiv: 1511.09213 . Bibcode:2016ApJ...827...78S. doi: 10.3847/0004-637X/827/1/78 .
  118. "Pulsar Planets". Archived from the original on 30 December 2005.
  119. Wolszczan, A.; Frail, D. (1992). "A planetary system around the millisecond pulsar PSR1257 + 12". Nature . 355 (6356): 145–147. Bibcode:1992Natur.355..145W. doi:10.1038/355145a0. S2CID   4260368.
  120. 1 2 3 Borucki, William J.; et al. (18 April 2013). "Kepler-62: A Five-Planet System with Planets of 1.4 and 1.6 Earth Radii in the Habitable Zone". Science Express. 340 (6132): 587–90. arXiv: 1304.7387 . Bibcode:2013Sci...340..587B. doi:10.1126/science.1234702. hdl:1721.1/89668. PMID   23599262. S2CID   21029755. Archived from the original on 2 May 2022. Retrieved 18 March 2022.
  121. Johnson, Michele; Harrington, J.D. (18 April 2013). "NASA's Kepler Discovers Its Smallest 'Habitable Zone' Planets to Date". NASA . Archived from the original on 8 May 2020. Retrieved 18 March 2022.
  122. Steffen, Jason H.; Fabrycky, Daniel C.; Ford, Eric B.; Carter, Joshua A.; Desert, Jean-Michel; Fressin, Francois; Holman, Matthew J.; Lissauer, Jack J.; Moorhead, Althea V.; Rowe, Jason F.; Ragozzine, Darin; Welsh, William F.; Batalha, Natalie M.; Borucki, William J.; Buchhave, Lars A.; Bryson, Steve; Caldwell, Douglas A.; Charbonneau, David; Ciardi, David R.; Cochran, William D.; Endl, Michael; Everett, Mark E.; Gautier III, Thomas N.; Gilliland, Ron L.; Girouard, Forrest R.; Jenkins, Jon M.; Horch, Elliott; Howell, Steve B.; Isaacson, Howard; et al. (2012), "Transit Timing Observations from Kepler: III. Confirmation of 4 Multiple Planet Systems by a Fourier-Domain Study of Anti-correlated Transit Timing Variations", Monthly Notices of the Royal Astronomical Society, 421 (3), arXiv: 1201.5412 , Bibcode:2012MNRAS.421.2342S, doi:10.1111/j.1365-2966.2012.20467.x, S2CID   11898578
  123. Cubillos, Patricio; Erkaev, Nikolai V.; Juvan, Ines; Fossati, Luca; Johnstone, Colin P.; Lammer, Helmut; Lendl, Monika; Odert, Petra; Kislyakova, Kristina G. (2016), "An overabundance of low-density Neptune-like planets", Monthly Notices of the Royal Astronomical Society, 466 (2): 1868–1879, arXiv: 1611.09236 , doi:10.1093/mnras/stw3103, S2CID   119408956
  124. Jontof-Hutter, Daniel; Ford, Eric B.; Rowe, Jason F.; Lissauer, Jack J.; Fabrycky, Daniel C.; Christa Van Laerhoven; Agol, Eric; Deck, Katherine M.; Holczer, Tomer; Mazeh, Tsevi (2015), Secure TTV Mass Measurements: Ten Kepler Exoplanets between 3 and 8 M🜨 with Diverse Densities and Incident Fluxes, arXiv: 1512.02003 , doi: 10.3847/0004-637X/820/1/39 , S2CID   11322397
  125. "Kepler-80". SIMBAD . Centre de données astronomiques de Strasbourg . Retrieved 10 January 2017.
  126. Xie, J.-W. (2013). "Transit timing variation of near-resonance planetary pairs: confirmation of 12 multiple-planet systems". Astrophysical Journal Supplement Series. 208 (2): 22. arXiv: 1208.3312 . Bibcode:2013ApJS..208...22X. doi:10.1088/0067-0049/208/2/22. S2CID   17160267.
  127. 1 2 Shallue, C. J.; Vanderburg, A. (2017). "Identifying Exoplanets With Deep Learning: A Five Planet Resonant Chain Around Kepler-80 And An Eighth Planet Around Kepler-90" (PDF). The Astrophysical Journal . 155 (2): 94. arXiv: 1712.05044 . Bibcode:2018AJ....155...94S. doi: 10.3847/1538-3881/aa9e09 . S2CID   4535051. Archived (PDF) from the original on 2017-12-24. Retrieved 2017-12-15.
  128. MacDonald, Mariah G.; Ragozzine, Darin; Fabrycky, Daniel C.; Ford, Eric B.; Holman, Matthew J.; Isaacson, Howard T.; Lissauer, Jack J.; Lopez, Eric D.; Mazeh, Tsevi (2016-01-01). "A Dynamical Analysis of the Kepler-80 System of Five Transiting Planets". The Astronomical Journal. 152 (4): 105. arXiv: 1607.07540 . Bibcode:2016AJ....152..105M. doi: 10.3847/0004-6256/152/4/105 . S2CID   119265122.
  129. Ekrem Murat Esmer; Baştürk, Özgür; Selim Osman Selam; Aliş, Sinan (2022), "Detection of two additional circumbinary planets around Kepler-451", Monthly Notices of the Royal Astronomical Society, 511 (4): 5207–5216, arXiv: 2202.02118 , doi:10.1093/mnras/stac357
  130. Masuda, Kento; Hirano, Teruyuki; Taruya, Atsushi; Nagasawa, Makiko; Suto, Yasushi (2013). "Characterization of the KOI-94 System with Transit Timing Variation Analysis: Implication for the Planet-Planet Eclipse". The Astrophysical Journal. 778 (2): 185–200. arXiv: 1310.5771 . Bibcode:2013ApJ...778..185M. doi:10.1088/0004-637X/778/2/185. S2CID   119264400.
  131. Bonomo, Aldo S.; Zeng, Li; Damasso, Mario; Leinhardt, Zoë M.; Justesen, Anders B.; Lopez, Eric; Lund, Mikkel N.; Malavolta, Luca; Silva Aguirre, Victor; Buchhave, Lars A.; Corsaro, Enrico; Denman, Thomas; Lopez-Morales, Mercedes; Mills, Sean M.; Mortier, Annelies; Rice, Ken; Sozzetti, Alessandro; Vanderburg, Andrew; Affer, Laura; Arentoft, Torben; Benbakoura, Mansour; Bouchy, François; Christensen-Dalsgaard, Jørgen; Collier Cameron, Andrew; Cosentino, Rosario; Dressing, Courtney D.; Dumusque, Xavier; Figueira, Pedro; Fiorenzano, Aldo F. M.; García, Rafael A.; Handberg, Rasmus; Harutyunyan, Avet; Johnson, John A.; Kjeldsen, Hans; Latham, David W.; Lovis, Christophe; Lundkvist, Mia S.; Mathur, Savita; Mayor, Michel; Micela, Giusi; Molinari, Emilio; Motalebi, Fatemeh; Nascimbeni, Valerio; Nava, Chantanelle; Pepe, Francesco; Phillips, David F.; Piotto, Giampaolo; Poretti, Ennio; Sasselov, Dimitar; Ségransan, Damien; Udry, Stéphane; Watson, Chris (May 2019). "A giant impact as the likely origin of different twins in the Kepler-107 exoplanet system". Nature Astronomy. 3 (5): 416–423. arXiv: 1902.01316 . Bibcode:2019NatAs...3..416B. doi:10.1038/s41550-018-0684-9. S2CID   89604609.
  132. 1 2 Lissauer, Jack J.; et al. (2011). "A closely packed system of low-mass, low-density planets transiting Kepler-11". Nature. 470 (7332): 53–58. arXiv: 1102.0291 . Bibcode:2011Natur.470...53L. doi:10.1038/nature09760. PMID   21293371. S2CID   4388001.
  133. Lissauer, Jack J.; et al. (2013). "All Six Planets Known to Orbit Kepler-11 Have Low Densities". The Astrophysical Journal. 770 (2). 131. arXiv: 1303.0227 . Bibcode: 2013ApJ...770..131L . doi: 10.1088/0004-637X/770/2/131 .
  134. Libby-Roberts, Jessica E.; et al. (2020). "The Featureless Transmission Spectra of Two Super-puff Planets". The Astronomical Journal. 159 (2): 57. arXiv: 1910.12988 . Bibcode:2020AJ....159...57L. doi: 10.3847/1538-3881/ab5d36 . S2CID   204950000.
  135. Nancy Atkinson (26 August 2010). "Kepler Discovers Multi-Planet System". Universe Today. Archived from the original on 24 February 2012. Retrieved 13 January 2011.
  136. Holman, M. J.; et al. (2010). "Kepler-9: A System of Multiple Planets Transiting a Sun-Like Star, Confirmed by Timing Variations" (PDF). Science. 330 (6000): 51–54. Bibcode:2010Sci...330...51H. doi:10.1126/science.1195778. PMID   20798283. S2CID   8141085. Archived (PDF) from the original on 2022-12-07. Retrieved 2022-06-17.
  137. Chou, Felicia; Hawkes, Alison; Landau, Elizabeth (14 December 2017). "Artificial Intelligence, NASA Data Used to Discover Eighth Planet Circling Distant Star". NASA . Archived from the original on 5 May 2020. Retrieved 15 December 2017.
  138. Schmitt, J. R.; Wang, J.; Fischer, D. A.; Jek, K. J.; Moriarty, J. C.; Boyajian, T. S.; Schwamb, M. E.; Lintott, C.; Lynn, S.; Smith, A. M.; Parrish, M.; Schawinski, K.; Simpson, R.; LaCourse, D.; Omohundro, M. R.; Winarski, T.; Goodman, S. J.; Jebson, T.; Schwengeler, H. M.; Paterson, D. A.; Sejpka, J.; Terentev, I.; Jacobs, T.; Alsaadi, N.; Bailey, R. C.; Ginman, T.; Granado, P.; Guttormsen, K. V.; Mallia, F.; Papillon, A. L.; Rossi, F.; Socolovsky, M.; Stiak, L. (2014-06-26). "Planet Hunters. VI. An Independent Characterization of KOI-351 and Several Long Period Planet Candidates From the Kepler Archival Data". The Astronomical Journal. 148 (28): 28. arXiv: 1310.5912 . Bibcode:2014AJ....148...28S. doi:10.1088/0004-6256/148/2/28. S2CID   119238163.
  139. Patel, Neel V. (2020-06-05). "Astronomers have found a planet like Earth orbiting a star like the sun". MIT Technology Review. Archived from the original on 2023-05-25. Retrieved 2020-06-07.
  140. Orosz, Jerome A.; Welsh, William F.; Carter, Joshua A.; Fabrycky, Daniel C.; Cochran, William D.; Endl, Michael; Ford, Eric B.; Haghighipour, Nader; MacQueen, Phillip J.; Mazeh, Tsevi; Sanchis-Ojeda, Roberto; Short, Donald R.; Torres, Guillermo; Agol, Eric; Buchhave, Lars A.; Doyle, Laurance R.; Isaacson, Howard; Lissauer, Jack J.; Marcy, Geoffrey W.; Shporer, Avi; Windmiller, Gur; Barclay, Thomas; Boss, Alan P.; Clarke, Bruce D.; Fortney, Jonathan; Geary, John C.; Holman, Matthew J.; Huber, Daniel; Jenkins, Jon M.; et al. (2012). "Kepler-47: A Transiting Circumbinary Multi-Planet System". Science. 337 (6101): 1511–4. arXiv: 1208.5489 . Bibcode:2012Sci...337.1511O. doi:10.1126/science.1228380. PMID   22933522. S2CID   44970411.
  141. "NASA's Kepler Discovers Multiple Planets Orbiting a Pair of Stars". exoplanets.nasa.gov. NASA. 28 August 2012. Archived from the original on 31 October 2012. Retrieved 2 September 2012. Kepler mission has discovered multiple transiting planets orbiting two suns for the first time
  142. Orosz, Jerome A.; Welsh, William F.; Carter, Joshua A.; Fabrycky, Daniel C.; Cochran, William D.; Endl, Michael; Ford, Eric B.; Haghighipour, Nader; MacQueen, Phillip J.; Mazeh, Tsevi; Sanchis-Ojeda, Roberto; Short, Donald R.; Torres, Guillermo; Agol, Eric; Buchhave, Lars A.; Doyle, Laurance R.; Isaacson, Howard; Lissauer, Jack J.; Marcy, Geoffrey W.; Shporer, Avi; Windmiller, Gur; Barclay, Thomas; Boss, Alan P.; Clarke, Bruce D.; Fortney, Jonathan; Geary, John C.; Holman, Matthew J.; Huber, Daniel; Jenkins, Jon M.; et al. (28 August 2012). "NASA's Kepler discovers multiple planets orbiting a pair of stars". Science. 337 (6101). Sciencedaily.com: 1511–4. arXiv: 1208.5489 . Bibcode:2012Sci...337.1511O. doi:10.1126/science.1228380. PMID   22933522. S2CID   44970411. Archived from the original on 21 September 2022. Retrieved 4 November 2012.
  143. Pichierri, Gabriele; Batygin, Konstantin; Morbidelli, Alessandro (2019), "The role of dissipative evolution for three-planet, near-resonant extrasolar systems", Astronomy & Astrophysics, 625: A7, arXiv: 1903.09474 , Bibcode:2019A&A...625A...7P, doi:10.1051/0004-6361/201935259, S2CID   85459759
  144. Mugrauer, M.; et al. (2006). "HD 3651 B: the first directly imaged brown dwarf companion of an exoplanet host star". Monthly Notices of the Royal Astronomical Society: Letters (abstract). 373 (1): L31–L35. arXiv: astro-ph/0608484 . Bibcode:2006MNRAS.373L..31M. doi:10.1111/j.1745-3933.2006.00237.x. S2CID   15608344.
  145. Marcy, Geoffrey W.; et al. (1999). "Two New Planets in Eccentric Orbits". The Astrophysical Journal. 520 (1): 239–247. arXiv: astro-ph/9904275 . Bibcode:1999ApJ...520..239M. doi:10.1086/307451. S2CID   16827678.
  146. Marcy, Geoffrey W.; et al. (2001). "Two Substellar Companions Orbiting HD 168443". The Astrophysical Journal. 555 (1): 418–425. Bibcode:2001ApJ...555..418M. doi: 10.1086/321445 .
  147. "Astronomers Announce First Clear Evidence of a Brown Dwarf". Space Telescope Science Institute news release STScI-1995-48. November 29, 1995. Archived from the original on 9 July 2008. Retrieved 24 September 2013.
  148. "Planet GJ 229 A b". Extrasolar Planets Encyclopaedia . 1995. Retrieved 7 September 2022.
  149. "Planet GJ 229 A c". Extrasolar Planets Encyclopaedia . 1995. Retrieved 7 September 2022.
  150. Feng, Fabo; Anglada-Escudé, Guillem; Tuomi, Mikko; Jones, Hugh R. A.; Chanamé, Julio; Butler, Paul R.; Janson, Markus (14 October 2019), "Detection of the nearest Jupiter analog in radial velocity and astrometry data", Monthly Notices of the Royal Astronomical Society, 490 (4): 5002–5016, arXiv: 1910.06804 , Bibcode:2019MNRAS.490.5002F, doi:10.1093/mnras/stz2912, S2CID   204575783
  151. Scholz, Ralf-Dieter; McCaughrean, Mark (2003-01-13). "Discovery of Nearest Known Brown Dwarf: Bright Southern Star Epsilon Indi Has Cool, Substellar Companion". European Southern Observatory. Archived from the original on October 14, 2007. Retrieved 2006-05-24.
  152. Scholz, R.-D.; McCaughrean, M. J.; Lodieu, N.; Kuhlbrodt, B. (February 2003). "ε Indi B: A new benchmark T dwarf". Astronomy and Astrophysics. 398 (3): L29–L33. arXiv: astro-ph/0212487 . Bibcode:2003A&A...398L..29S. doi:10.1051/0004-6361:20021847. S2CID   119474823.
  153. Butler, R. P.; et al. (2006). "Catalog of Nearby Exoplanets". The Astrophysical Journal. 646 (1): 505–522. arXiv: astro-ph/0607493 . Bibcode:2006ApJ...646..505B. doi:10.1086/504701. S2CID   119067572.
  154. Feng, Fabo; Butler, R. Paul; et al. (August 2022). "3D Selection of 167 Substellar Companions to Nearby Stars". The Astrophysical Journal Supplement Series . 262 (21): 21. arXiv: 2208.12720 . Bibcode:2022ApJS..262...21F. doi: 10.3847/1538-4365/ac7e57 . S2CID   251864022.
  155. Hatzes, Artie P.; et al. (2022). "A Radial Velocity Study of the Planetary System of π Mensae: Improved Planet Parameters for π Mensae c and a Third Planet on a 125 Day Orbit". The Astronomical Journal. 163 (5): 223. arXiv: 2203.01018 . Bibcode:2022AJ....163..223H. doi: 10.3847/1538-3881/ac5dcb . S2CID   247218413.
  156. Fischer, Debra A.; et al. (2003). "A Planetary Companion to HD 40979 and Additional Planets Orbiting HD 12661 and HD 38529". The Astrophysical Journal. 586 (2): 1394–1408. Bibcode: 2003ApJ...586.1394F . doi: 10.1086/367889 .
  157. Khandelwal, Akanksha; Sharma, Rishikesh; Chakraborty, Abhijit; Chaturvedi, Priyanka; Ulmer-Moll, Solène; Ciardi, David R.; Boyle, Andrew W.; Baliwal, Sanjay; Bieryla, Allyson; Latham, David W.; Prasad, Neelam J. S. S. V.; Nayak, Ashirbad; Lendl, Monika; Mordasini, Christoph (2023-04-01). "Discovery of a massive giant planet with extreme density around the sub-giant star TOI-4603". Astronomy & Astrophysics. 672: L7. arXiv: 2303.11841 . Bibcode:2023A&A...672L...7K. doi: 10.1051/0004-6361/202245608 . ISSN   0004-6361. Archived from the original on 2024-02-28. Retrieved 2023-12-15.