Gliese 357

Last updated
Gliese 357
GJ 357 system.png
Artist concept of the Gliese 357 (GJ357) system.
Credit: Jack Madden
Observation data
Epoch J2000       Equinox J2000
Constellation Hydra
Right ascension 09h 36m 01.63722s [1]
Declination −21° 39 38.8776 [1]
Apparent magnitude  (V)10.906 [2]
Characteristics
Evolutionary stage main sequence
Spectral type M2.5V [3]
Astrometry
Radial velocity (Rv)−35.03±0.17 [1]  km/s
Proper motion (μ)RA: 138.722±0.023  mas/yr [1]
Dec.: −990.342±0.020  mas/yr [1]
Parallax (π)105.9789 ± 0.0227  mas [1]
Distance 30.776 ± 0.007  ly
(9.436 ± 0.002  pc)
Absolute magnitude  (MV)+11.13 [4]
Details
Mass 0.362 [5]   M
Radius 0.333 [4]   R
Luminosity 0.014 [6]   L
Surface gravity (log g)4.96 [5]   cgs
Temperature 3,488 [5]   K
Metallicity [Fe/H]−0.14 [5]   dex
Rotation 74.3±1.7  d [7]
Rotational velocity (v sin i)2.5 [5]  km/s
Other designations
HIP  47103, 2MASS 09360161-2139371, TOI 562
Database references
SIMBAD data

GJ 357 (also designated Gliese 357) is an M-type main sequence star with an unusually low starspot activity. [8] It is located 31 light-years from the Solar System. [9] The system is part of the Hydra constellation. [9]

Planetary system

The star has three confirmed exoplanets in its orbit, [10] one of which, Gliese 357 d, is considered to be a "super-Earth" within the circumstellar habitable zone. [11] [9] [12] [13]

Planets b and c are close to 3:7 mean-motion resonance. Presuming resonance chain crosses gap to outermost and cold super-terrestrial d and the resonances are simple, GJ 357 may have much more suitable planet for life at approx. 27.5 day period and almost Earth's flux, and (less likely) Mars-sized planet in 2:1 period ratio with GJ 357 c and 2:3 ratio with hypothetical HZ rocky one.[ citation needed ]

The Gliese 357 planetary system [14]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b1.84±0.31  M🜨 0.035±0.0023.93072+0.00008
−0.00006
0.047+0.059
0.047
89.12+0.37
−0.31
°
1.217+0.084
−0.083
  R🜨
c≥3.40±0.46  M🜨 0.061±0.0049.1247+0.0011
−0.0010
0.072±0.053
d ≥6.1±1.0  M🜨 0.204±0.01555.661±0.0550.033+0.057
0.033

Related Research Articles

GJ 1061 is a red dwarf star located 12 light-years from Earth in the southern constellation of Horologium. Even though it is a relatively nearby star, it has an apparent visual magnitude of about 13, so it can only be seen with at least a moderately-sized telescope.

Luyten's Star (GJ 273) is a red dwarf in the constellation Canis Minor located at a distance of 12.35 light-years from the Sun. It has a visual magnitude of 9.9, making it too faint to be viewed with the unaided eye. It is named after Willem Jacob Luyten, who, in collaboration with Edwin G. Ebbighausen, first determined its high proper motion in 1935. The star has two confirmed planets and two candidate planets, of which Luyten b is in the circumstellar habitable zone.

HD 101930, also known as Gliese 3683, is an orange hued star with an orbiting exoplanet located in the southern constellation Centaurus. It has an apparent magnitude of 8.21, making it faintly visible in binoculars but not to the naked eye. The system is located relatively close at a distance of 98 light years but is receding with a heliocentric radial velocity of 18.4 km/s. It has a relatively large proper motion, traversing the celestial sphere with an angular velocity of 0.320″·yr−1.

HD 28185 is a yellow dwarf star similar to the Sun located 128 light-years away from Earth in the constellation Eridanus. The designation HD 28185 refers to its entry in the Henry Draper catalogue. The star is known to possess one long-period extrasolar planet.

Gliese 832 is a red dwarf of spectral type M2V in the southern constellation Grus. The apparent visual magnitude of 8.66 means that it is too faint to be seen with the naked eye. It is located relatively close to the Sun, at a distance of 16.2 light years and has a high proper motion of 818.16 milliarcseconds per year. Gliese 832 has just under half the mass and radius of the Sun. Its estimated rotation period is a relatively leisurely 46 days. The star is roughly 6 billion years old.

Gliese 682 or GJ 682 is a red dwarf. It is listed as the 53rd-nearest known star system to the Sun, being 16.3 light years away from the Earth. Even though it is close by, it is dim with a magnitude of 10.95 and thus requires a telescope to be seen. It is located in the constellation of Scorpius, near the bright star Theta Scorpii. The star is in a crowded region of sky near the Galactic Center, and so appears to be near a number of deep-sky objects from the Solar System's perspective. The star is only 0.5 degrees from the much more distant globular cluster NGC 6388.

BD−17 63 is a low-mass K-type main-sequence star in the southern constellation Cetus. It is a 10th magnitude star at a distance of 113 light-years from Earth. The star is rotating slowly with a negligible level of magnetic activity and an age of over 4 billion years.

Gliese 163 is a faint red dwarf star with multiple exoplanetary companions in the southern constellation of Dorado. Other stellar catalog names for it include HIP 19394 and LHS 188. It is too faint to be visible to the naked eye, having an apparent visual magnitude of 11.79 and an absolute magnitude of 10.91. This system is located at a distance of 49.4 light-years from the Sun based on parallax measurements. Judging by its space velocity components, it is most likely a thick disk star.

Gliese 221, also known as BD-06 1339, is a star with an exoplanetary companion in the equatorial constellation of Orion. It is too faint to be visible to the naked eye, having an apparent visual magnitude of 9.70 and an absolute magnitude of 8.15. Using parallax measurements, the distance to this system can be estimated as 66.2 light-years. It is receding from the Sun with a radial velocity of +23 km/s. This is a high proper motion star, traversing the celestial sphere at an angular rate of 0.333″·yr−1.

Gliese 754 is a dim star in the southern constellation of Telescopium. It has an apparent visual magnitude of 12.25, which requires a telescope to view. The star is located at a distance of 19.3 light-years from the Sun based on parallax, and it is drifting further away with a radial velocity of +7 km/s. It is one of the hundred closest stars to the Solar System. Calculations of its orbit around the Milky Way showed that it is eccentric, and indicate that it might be a thick disk object.

<span class="mw-page-title-main">Gliese 180</span> Star in the constellation Eridanus

Gliese 180, is a small red dwarf star in the equatorial constellation of Eridanus. It is invisible to the naked eye with an apparent visual magnitude of 10.9. The star is located at a distance of 39 light years from the Sun based on parallax, and is drifting closer with a radial velocity of −14.6 km/s. It has a high proper motion, traversing the sky at the rate of 0.765 arcseconds per year.

GJ 625 is a small red dwarf star with an exoplanetary companion in the northern constellation of Draco. The system is located at a distance of 21.1 light-years from the Sun based on parallax, but is drifting closer with a radial velocity of −13 km/s. It is too faint to be visible to the naked eye, having an apparent visual magnitude of 10.13 and an absolute magnitude of 11.06.

Gliese 686 is a star in the constellation of Hercules, with an apparent magnitude +9.577. Although it is close to the Solar System – at 26.6 light-years – it is not the closest known star in its constellation, since Gliese 661 is 20.9 light years away. The closest system to this star is the bright μ Herculis, at 4.5 light years. They are followed by GJ 1230 and Gliese 673, at 7.2 and 7.6 light years respectively.

HD 39194 is a star located in the southern circumpolar constellation Mensa. It has an apparent magnitude of 8.07, making it readily visible in binoculars but not to the naked eye. The object is relatively close at a distance of 86 light years but is receding with a heliocentric radial velocity of 13.9 km/s.

<span class="mw-page-title-main">Wolf 1069</span> Red dwarf star in the constellation Cygnus

Wolf 1069 is a red dwarf star located 31.2 light-years away from the Solar System in the constellation of Cygnus. The star has 17% the mass and 18% the radius of the Sun, a temperature of 3,158 K, and a slow rotation period of 150–170 days. It hosts one known exoplanet called Wolf 1069 b which could possibly sustain life.

References

  1. 1 2 3 4 5 6 Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv: 2208.00211 . Bibcode:2023A&A...674A...1G. doi: 10.1051/0004-6361/202243940 . S2CID   244398875. Gaia DR3 record for this source at VizieR.
  2. Koen, C.; Kilkenny, D.; Van Wyk, F.; Marang, F. (2010). "UBV(RI)C JHK observations of Hipparcos-selected nearby stars". Monthly Notices of the Royal Astronomical Society. 403 (4): 1949. Bibcode:2010MNRAS.403.1949K. doi: 10.1111/j.1365-2966.2009.16182.x .
  3. Gray, R. O.; Corbally, C. J.; Garrison, R. F.; McFadden, M. T.; Bubar, E. J.; McGahee, C. E.; O'Donoghue, A. A.; Knox, E. R. (2006). "Contributions to the Nearby Stars (NStars) Project: Spectroscopy of Stars Earlier than M0 within 40 pc-The Southern Sample". The Astronomical Journal. 132 (1): 161–170. arXiv: astro-ph/0603770 . Bibcode:2006AJ....132..161G. doi:10.1086/504637. S2CID   119476992.
  4. 1 2 Houdebine, E. R.; Mullan, D. J.; Paletou, F.; Gebran, M.; Bubar, E. J.; McGahee, C. E.; O'Donoghue, A. A.; Knox, E. R. (2016). "Rotation-Activity Correlations in K and M Dwarfs. I. Stellar Parameters and Compilations of v sin I and P/Sin I for a Large Sample of Late-K and M Dwarfs". The Astrophysical Journal. 822 (2): 97. arXiv: 1604.07920 . Bibcode:2016ApJ...822...97H. doi: 10.3847/0004-637X/822/2/97 . S2CID   119118088.
  5. 1 2 3 4 5 Passegger, V. M.; Reiners, Ansgar; Jeffers, S. V.; Wende-von Berg, S.; Schöfer, P.; Caballero, J. A.; Schweitzer, A.; Amado, P. J.; Béjar, V. J. S.; Cortés-Contreras, M.; Hatzes, A. P.; Kürster, M.; Montes, D.; Pedraz, S.; Quirrenbach, A.; Ribas, I.; Seifert, W. (2018). "The CARMENES search for exoplanets around M dwarfs. Photospheric parameters of target stars from high-resolution spectroscopy". Astronomy and Astrophysics. 615: A6. arXiv: 1802.02946 . Bibcode:2018A&A...615A...6P. doi:10.1051/0004-6361/201732312. S2CID   55639432.
  6. Morales, J. C.; Ribas, I.; Jordi, C.; McFadden, M. T.; Bubar, E. J.; McGahee, C. E.; O'Donoghue, A. A.; Knox, E. R. (2008). "The effect of activity on stellar temperatures and radii". Astronomy and Astrophysics. 478 (2): 507. arXiv: 0711.3523 . Bibcode:2008A&A...478..507M. doi:10.1051/0004-6361:20078324. S2CID   16238033.
  7. Suárez Mascareño, A.; Rebolo, R.; González Hernández, J. I.; Esposito, M. (2015), "Rotation periods of late-type dwarf stars from time series high-resolution spectroscopy of chromospheric indicators", Monthly Notices of the Royal Astronomical Society, 452 (3): 2745–2756, arXiv: 1506.08039 , Bibcode:2015MNRAS.452.2745S, doi:10.1093/mnras/stv1441
  8. Modirrousta-Galian, D.; Stelzer, B.; Magaudda, E.; Maldonado, J.; Güdel, M.; Sanz-Forcada, J.; Edwards, B.; Micela, G. (2020), "A Super-Earth Orbiting an Extremely Inactive Host Star", Astronomy & Astrophysics, A113: 641, arXiv: 2007.10262 , doi:10.1051/0004-6361/202038280, S2CID   220647396
  9. 1 2 3 Reddy, Francis; Center, NASA’s Goddard Space Flight (2019-07-31). "TESS Discovers Habitable Zone Planet in GJ 357 System". SciTechDaily. Retrieved 2019-08-01.
  10. "The Extrasolar Planet Encyclopaedia — Gj 357 b". Extrasolar Planets Encyclopaedia . 1995. Retrieved 2019-08-01.
  11. Falconer, Rebecca, Newly uncovered super-Earth 31 light-years away may be habitable , Axios, August 1, 2019
  12. "Potentially habitable 'super-Earth' discovered just 31 light-years away". NBC News. 31 July 2019. Retrieved 2019-08-01.
  13. Garner, Rob (2019-07-30). "NASA's TESS Helps Find Intriguing New World". NASA. Retrieved 2019-08-01.
  14. Luque, R.; Pallé, E.; et al. (August 2019). "Planetary system around the nearby M dwarf GJ 357 including a transiting, hot, Earth-sized planet optimal for atmospheric characterization". Astronomy & Astrophysics . 628: A39. arXiv: 1904.12818 . Bibcode:2019A&A...628A..39L. doi:10.1051/0004-6361/201935801. S2CID   139102184.