TW Hydrae

Last updated
TW Hydrae
Inner region of TW Hydrae protoplanetary disc.jpg
Inner region of TW Hydrae protoplanetary disc
Credit: S. Andrews, B. Saxton, ALMA (see description)
Observation data
Epoch J2000.0       Equinox J2000.0
Constellation Hydra
Right ascension 11h 01m 51.9054s [1]
Declination −34° 42 17.0316 [1] >
Apparent magnitude  (V)11.27 ± 0.09 [2]
Characteristics
Evolutionary stage Pre-main-sequence
Spectral type K6 [2]
U−B color index -0.33 [3]
B−V color index 0.67 [2]
J−H color index 0.659 [2]
J−K color index 0.92 [2]
Variable type T Tauri
Astrometry
Radial velocity (Rv)13.40 ± 0.8 [2]  km/s
Proper motion (μ)RA: −68.389 ± 0.054 [1]   mas/yr
Dec.: −14.016 ± 0.059 [1]   mas/yr
Parallax (π)16.6428 ± 0.0416  mas [1]
Distance 196.0 ± 0.5  ly
(60.1 ± 0.2  pc)
Details
Mass 0.8 [4]   M
Radius 1.11 [5]   R
Luminosity (bolometric)0.28 [note 1]   L
Temperature 4,000 [5]   K
Age 8 [5]   Myr
Other designations
TWA  1, TW Hya, CD−34° 7151, HIP  53911
Database references
SIMBAD data

TW Hydrae is a T Tauri star approximately 196 light-years away [1] in the constellation of Hydra (the Sea Serpent). TW Hydrae is about 80% of the mass of the Sun, but is only about 5-10 million years old. The star appears to be accreting from a face-on protoplanetary disk of dust and gas, which has been resolved in images from the ALMA observatory. TW Hydrae is accompanied by about twenty other low-mass stars with similar ages and spatial motions, comprising the "TW Hydrae association" or TWA, one of the closest regions of recent "fossil" star-formation to the Sun.

Contents

Stellar characteristics

A broadband optical light curve plotted from MOST microsatellite data published by Rucinski et al. (2008) TWHyaLightCurve.png
A broadband optical light curve plotted from MOST microsatellite data published by Rucinski et al. (2008)

TW Hydrae is a pre-main-sequence star that is approximately 80% the mass of and 111% the radius of the Sun. It has a temperature of 4000 K and is about 8 million years old. In comparison, the Sun is about 4.6 billion years old [7] and has a temperature of 5778 K. [8] The star's luminosity is 28% (0.28x) that of the Sun, equivalent to that of a main-sequence star of spectral type ~K2. However, the spectral class is K6.

The star's apparent magnitude, or how bright it appears from Earth's perspective, is 11.27. It is too dim to be seen with the naked eye.

Planetary system

The TW Hydrae planetary system [9]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b (unconfirmed)23.72 M 22~4.25  R
Protoplanetary disk130? AU

The star is known to host one likely exoplanet, TW Hydrae b.

Protoplanetary disk

Previously disproven protoplanet

In December 2007, a team led by Johny Setiawan of the Max Planck Institute for Astronomy in Heidelberg, Germany announced discovery of a planet orbiting TW Hydrae, dubbed "TW Hydrae b" with a minimum mass around 1.2 Jupiter masses, a period of 3.56 days, and an orbital radius of 0.04 astronomical units (inside the inner rim of the protoplanetary disk). Assuming it orbits in the same plane as the outer part of the dust disk (inclination 7±1° [10] ), it has a true mass of 9.8±3.3 Jupiter masses. [10] [11] However, if the inclination is similar to the inner part of the dust disk (4.3±1.0° [12] ), the mass would be 16+5
3
Jupiter masses, making it a brown dwarf. [12] Since the star itself is so young, it was presumed this is the youngest extrasolar planet yet discovered, and essentially still in formation. [13]

In 2008 a team of Spanish researchers concluded that the planet does not exist: the radial velocity variations were not consistent when observed at different wavelengths, which would not occur if the origin of the radial velocity variations was caused by an orbiting planet. Instead, the data was better modelled by starspots on TW Hydrae's surface passing in and out of view as the star rotates. "Results support the spot scenario rather than the presence of a hot Jupiter around TW Hya". [14] Similar wavelength-dependent radial velocity variations, also caused by starspots, have been detected on other T Tauri stars. [15]

New study of more distant planet

In 2016, ALMA found evidence that a possible Neptune-like planet was forming in its disk, at a distance of around 22 AU. [16]

Detection of methanol

In 2016, methanol, one of the building blocks for life, was detected in the star's protoplanetary disk. [17] [18] [19] [20] [21] [22] [23] [24]

Notes

  1. From , where is the luminosity, is the radius, is the effective surface temperature and is the Stefan–Boltzmann constant.

Related Research Articles

<span class="mw-page-title-main">Fomalhaut</span> Triple star system in the constellation Piscis Austrinus

Fomalhaut is the brightest star in the southern constellation of Piscis Austrinus, the Southern Fish, and one of the brightest stars in the night sky. It has the Bayer designation Alpha Piscis Austrini, which is Latinized from α Piscis Austrini, and is abbreviated Alpha PsA or α PsA. This is a class A star on the main sequence approximately 25 light-years (7.7 pc) from the Sun as measured by the Hipparcos astrometry satellite. Since 1943, the spectrum of this star has served as one of the stable anchor points by which other stars are classified.

<span class="mw-page-title-main">Epsilon Indi</span> Star system in the constellation of Indus

Epsilon Indi, Latinized from ε Indi, is a star system located at a distance of approximately 12 light-years from Earth in the southern constellation of Indus. The star has an orange hue and is faintly visible to the naked eye with an apparent visual magnitude of 4.83. It consists of a K-type main-sequence star, ε Indi A, and two brown dwarfs, ε Indi Ba and ε Indi Bb, in a wide orbit around it. The brown dwarfs were discovered in 2003. ε Indi Ba is an early T dwarf (T1) and ε Indi Bb a late T dwarf (T6) separated by 0.6 arcseconds, with a projected distance of 1460 AU from their primary star.

<span class="mw-page-title-main">Protoplanetary disk</span> Gas and dust surrounding a newly formed star

A protoplanetary disk is a rotating circumstellar disc of dense gas and dust surrounding a young newly formed star, a T Tauri star, or Herbig Ae/Be star. The protoplanetary disk may also be considered an accretion disk for the star itself, because gases or other material may be falling from the inner edge of the disk onto the surface of the star. This process should not be confused with the accretion process thought to build up the planets themselves. Externally illuminated photo-evaporating protoplanetary disks are called proplyds.

<span class="mw-page-title-main">Beta Pictoris</span> Second brightest star in the southern constellation of Pictor

Beta Pictoris is the second brightest star in the constellation Pictor. It is located 63.4 light-years (19.4 pc) from the Solar System, and is 1.75 times as massive and 8.7 times as luminous as the Sun. The Beta Pictoris system is very young, only 20 to 26 million years old, although it is already in the main sequence stage of its evolution. Beta Pictoris is the title member of the Beta Pictoris moving group, an association of young stars which share the same motion through space and have the same age.

<span class="mw-page-title-main">2M1207</span> Brown dwarf in the constellation Centaurus

2M1207, 2M1207A or 2MASS J12073346–3932539 is a brown dwarf located in the constellation Centaurus; a companion object, 2M1207b, may be the first extrasolar planetary-mass companion to be directly imaged, and is the first discovered orbiting a brown dwarf.

<span class="mw-page-title-main">47 Ursae Majoris</span> Star in the constellation Ursa Major

47 Ursae Majoris, formally named Chalawan, is a yellow dwarf star approximately 45.3 light-years from Earth in the constellation of Ursa Major. As of 2011, three extrasolar planets are believed to orbit the star.

<span class="mw-page-title-main">2M1207b</span> Planetary-mass object orbiting the brown dwarf 2M1207

2M1207b is a planetary-mass object orbiting the brown dwarf 2M1207, in the constellation Centaurus, approximately 170 light-years from Earth. It is one of the first candidate exoplanets to be directly observed. It was discovered in April 2004 by the Very Large Telescope (VLT) at the Paranal Observatory in Chile by a team from the European Southern Observatory led by Gaël Chauvin. It is believed to be from 5 to 6 times the mass of Jupiter and may orbit 2M1207 at a distance roughly as far from the brown dwarf as Pluto is from the Sun.

<span class="mw-page-title-main">Debris disk</span> Disk of dust and debris in orbit around a star

A debris disk, or debris disc, is a circumstellar disk of dust and debris in orbit around a star. Sometimes these disks contain prominent rings, as seen in the image of Fomalhaut on the right. Debris disks are found around stars with mature planetary systems, including at least one debris disk in orbit around an evolved neutron star. Debris disks can also be produced and maintained as the remnants of collisions between planetesimals, otherwise known as asteroids and comets.

The Beta Pictoris Moving Group is a young moving group of stars located relatively near Earth. A moving group, in astronomy, is a group of stars that share a common motion through space as well as a common origin. This moving group is named for Beta Pictoris.

HD 98800, also catalogued as TV Crateris, is a quadruple star system in the constellation of Crater. Parallax measurements made by the Hipparcos spacecraft put it at a distance of about 150 light-years away, but this value is in high error. The system is located within the TW Hydrae association (TWA), and has received the designation TWA 4.

TW Hydrae b is a likely extrasolar planet orbiting the young T Tauri star TW Hydrae approximately 176 light-years (54 parsecs, or nearly 1.665×1016 km) away in the constellation of Hydra. It is likely a Neptune-like planet orbiting at a distance of nearly 22 AU from its star.

<span class="mw-page-title-main">HR 4796</span> Binary star system in the constellation Centaurus

HR 4796 is a binary star system in the southern constellation of Centaurus. Parallax measurements put it at a distance of 235 light-years from the Earth. The two components of this system have an angular separation of 7.7 arcseconds, which, at their estimated distance, is equivalent to a projected separation of about 560 Astronomical Units (AU), or 560 times the separation of the Earth from the Sun. The star and its ring resemble an eye, and it is sometimes known by the nickname "Sauron's Eye".

<span class="mw-page-title-main">HD 141569</span> Star in the constellation Libra

HD 141569 is an isolated Herbig Ae/Be star of spectral class A2Ve approximately 364 light-years away in the constellation of Libra. The primary star has two red dwarf companions at about nine arcseconds. In 1999, a protoplanetary disk was discovered around the star. A gap in the disk led to speculation about a possible extrasolar planet forming in the disk.

<span class="mw-page-title-main">V429 Geminorum</span> Star in the constellation Gemini

V429 Geminorum (BD+20°1790) is a young orange dwarf star in the constellation Gemini, located 90 light years away from the Sun. It is a BY Draconis variable, a cool dwarf which varies rapidly in brightness as it rotates.

<span class="mw-page-title-main">AB Aurigae</span> Star in the constellation Auriga

AB Aurigae is a young Herbig Ae star in the Auriga constellation. It is located at a distance of approximately 531 light years from the Sun based on stellar parallax. This pre-main-sequence star has a stellar classification of A0Ve, matching an A-type main-sequence star with emission lines in the spectrum. It has 2.4 times the mass of the Sun and is radiating 38 times the Sun's luminosity from its photosphere at an effective temperature of 9,772 K. The radio emission from the system suggests the presence of a thermal jet originating from the star with a velocity of 300 km s−1. This is causing an estimated mass loss of 1.7×10−8 M yr−1.

<span class="mw-page-title-main">Strategic Explorations of Exoplanets and Disks with Subaru</span> Long survey that imaged exoplanets and protoplanetary disks

Strategic Explorations of Exoplanets and Disks with Subaru (SEEDS) is a multi-year survey that used the Subaru Telescope on Mauna Kea, Hawaii in an effort to directly image extrasolar planets and protoplanetary/debris disks around hundreds of nearby stars. SEEDS is a Japanese-led international project. It consists of some 120 researchers from a number of institutions in Japan, the U.S. and the EU. The survey's headquarters is at the National Astronomical Observatory of Japan (NAOJ) and led by Principal Investigator Motohide Tamura. The goals of the survey are to address the following key issues in the study of extrasolar planets and disks: the detection and census of exoplanets in the regions around solar-mass and massive stars; the evolution of protoplanetary disks and debris disks; and the link between exoplanets and circumstellar disks.

<span class="mw-page-title-main">Circumstellar disc</span> Accumulation of matter around a star

A circumstellar disc is a torus, pancake or ring-shaped accretion disk of matter composed of gas, dust, planetesimals, asteroids, or collision fragments in orbit around a star. Around the youngest stars, they are the reservoirs of material out of which planets may form. Around mature stars, they indicate that planetesimal formation has taken place, and around white dwarfs, they indicate that planetary material survived the whole of stellar evolution. Such a disc can manifest itself in various ways.

38 Virginis is an F-type main sequence star in the constellation of Virgo. It is around 108 light years distant from the Earth.

<span class="mw-page-title-main">PDS 70</span> T Tauri-type star in the constellation Centaurus

PDS 70 is a very young T Tauri star in the constellation Centaurus. Located 370 light-years from Earth, it has a mass of 0.76 M and is approximately 5.4 million years old. The star has a protoplanetary disk containing two nascent exoplanets, named PDS 70b and PDS 70c, which have been directly imaged by the European Southern Observatory's Very Large Telescope. PDS 70b was the first confirmed protoplanet to be directly imaged.

<span class="mw-page-title-main">Circumplanetary disk</span> Accumulation of matter around a planet

A circumplanetary disk is a torus, pancake or ring-shaped accumulation of matter composed of gas, dust, planetesimals, asteroids or collision fragments in orbit around a planet. Around the planets, they are the reservoirs of material out of which moons may form. Such a disk can manifest itself in various ways.

References

  1. 1 2 3 4 5 6 Brown, A. G. A.; et al. (Gaia collaboration) (August 2018). "Gaia Data Release 2: Summary of the contents and survey properties". Astronomy & Astrophysics . 616. A1. arXiv: 1804.09365 . Bibcode: 2018A&A...616A...1G . doi: 10.1051/0004-6361/201833051 . Gaia DR2 record for this source at VizieR.
  2. 1 2 3 4 5 6 "V* TW Hya". SIMBAD . Centre de données astronomiques de Strasbourg . Retrieved 2014-01-02.
  3. Mermilliod, J.C. (1991), "Homogeneous Means in the UBV System", VizieR On-line Data Catalog, Institut d'Astronomie, Universite de Lausanne, Bibcode:2006yCat.2168....0M. Vizier catalog entry
  4. Chunhua, Qi; et al. (August 2013). "Imaging of the CO Snow Line in a Solar Nebula Analog". Science . 341 (6146): 630–632. arXiv: 1307.7439 . Bibcode:2013Sci...341..630Q. doi:10.1126/science.1239560. PMID   23868917. S2CID   23271440.
  5. 1 2 3 Rhee, J.H.; et al. (May 2007), "Characterization of dusty debris disks: the IRAS and Hipparcos catalogs", The Astrophysical Journal, 660 (2): 1556–1571, arXiv: astro-ph/0609555 , Bibcode:2007ApJ...660.1556R, doi:10.1086/509912, S2CID   11879505. Vizier catalog entry
  6. Rucinski, Slavek M.; Matthews, Jaymie M.; Kuschnig, Rainer; Pojmanski, Grzegorz; Rowe, Jason; Guenther, David B.; Moffat, Anthony F. J.; Sasselov, Dimitar; Walker, Gordon A. H.; Weiss, Werner W. (December 2008). "Photometric variability of the T Tauri star TW Hya on time-scales of hours to years". Monthly Notices of the Royal Astronomical Society. 391 (4): 1913–1924. arXiv: 0809.3987 . Bibcode:2008MNRAS.391.1913R. doi: 10.1111/j.1365-2966.2008.14014.x .
  7. Fraser Cain (16 September 2008). "How Old is the Sun?". Universe Today . Retrieved 19 February 2011.
  8. Fraser Cain (15 September 2008). "Temperature of the Sun". Universe Today. Retrieved 19 February 2011.
  9. Tsukagoshi, Takashi; Nomura, Hideko; Muto, Takayuki; Kawabe, Ryohei; Ishimoto, Daiki; Kanagawa, Kazuhiro D.; Okuzumi, Satoshi; Ida, Shigeru; Walsh, Catherine; Millar, Tom J. (2016). "A Gap with a Deficit of Large Grains in the protoplanetary disk around TW Hya". The Astrophysical Journal. 829 (2): L35. arXiv: 1605.00289 . Bibcode:2016ApJ...829L..35T. doi: 10.3847/2041-8205/829/2/L35 . S2CID   41738556.
  10. 1 2 Setiawan, J.; Henning, Th.; Launhardt, R.; Müller, A.; Weise, P.; Kürster, M. (3 January 2008). "A young massive planet in a star–disk system". Nature. 451 (7174): 38–41. Bibcode:2008Natur.451...38S. doi:10.1038/nature06426. PMID   18172492. S2CID   4431370.
  11. McKee, Maggie (2 January 2008). "First planet discovered around a youthful star". NewScientist.com news service. Retrieved 2008-01-02.
  12. 1 2 Pontoppidan, Klaus M.; et al. (2008). "Spectro-astrometric imaging of molecular gas within protoplanetary disk gaps". The Astrophysical Journal . 684 (2): 1323–1329. arXiv: 0805.3314 . Bibcode:2008ApJ...684.1323P. doi:10.1086/590400. S2CID   15445587.
  13. "A young extrasolar planet in its cosmic nursery: Astronomers from Heidelberg discover planet in a dusty disk around a newborn star". Max Planck Institute for Astronomy. 2008-01-02. Retrieved 2008-01-03.
  14. Huelamo, N.; et al. (2008). "TW Hydrae: evidence of stellar spots instead of a Hot Jupiter". Astronomy and Astrophysics . 489 (2): L9–L13. arXiv: 0808.2386 . Bibcode:2008A&A...489L...9H. doi:10.1051/0004-6361:200810596. S2CID   18775872.
  15. Prato, L.; et al. (2008). "A Young Planet Search in Visible and IR Light: DN Tau, V836 Tau, and V827 Tau". The Astrophysical Journal . 687 (2): L103–L106. arXiv: 0809.3599 . Bibcode:2008ApJ...687L.103P. doi:10.1086/593201. S2CID   14888302.
  16. "Astronomers discover signs of planet being born around a star" . Independent.co.uk . 14 September 2016. Archived from the original on 2022-05-26.
  17. "Methanol, a Building Block of Life, Found Around Newborn Star for 1st Time". Space.com . 17 June 2016.
  18. Astrophysics, Harvard-Smithsonian Center for (2016-06-20). "ALMA Reveals Methanol in the TW Hydrae Protoplanetary Disk". SciTechDaily. Retrieved 2021-08-06.
  19. "Methanol Detected in Protoplanetary Disc around Young Star TW Hydrae | Astronomy | Sci-News.com". Breaking Science News | Sci-News.com. 15 June 2016. Retrieved 2021-08-06.
  20. "NASA Astrobiology". astrobiology.nasa.gov. Retrieved 2021-08-06.
  21. "First Detection of Methyl Alcohol in a Planet-forming Disk". National Radio Astronomy Observatory. Retrieved 2021-08-06.
  22. Dockrill, Peter (16 June 2016). "Scientists Just Discovered Methyl Alcohol in a Nearby Planet-Forming Disc". ScienceAlert. Retrieved 2021-08-06.
  23. Report, Science World (2017-05-29). "Methanol Discovered For The First Time In The Protoplanetary Disk Of Young Star 'TW Hydra'". Science World Report. Retrieved 2021-08-06.
  24. "A Molecule For Life Has Been Found Inside A Nearby Planetary Nursery". NDTV.com. Retrieved 2021-08-06.
  25. "Shadow on TW Hydrae's disc". www.spacetelescope.org. Retrieved 12 January 2017.