Time-domain astronomy

Last updated
Light curve of NGC 2525 after a supernova SN2018gv.gif
Light curve of NGC 2525 after a supernova

Time-domain astronomy is the study of how astronomical objects change with time. Though the study may be said to begin with Galileo's Letters on Sunspots , the term now refers especially to variable objects beyond the Solar System. Changes over time may be due to movements or changes in the object itself. Common targets included are supernovae, pulsating stars, novas, flare stars, blazars and active galactic nuclei. Visible light time domain studies include OGLE, HAT-South, PanSTARRS, SkyMapper, ASAS, WASP, CRTS, GOTO and in a near future the LSST at the Vera C. Rubin Observatory.

Contents

Time-domain astronomy studies transient astronomical events, often shortened by astronomers to transients, as well as various types of variable stars, including periodic, quasi-periodic, and those exhibiting changing behavior or type. Other causes of time variability are asteroids, high proper motion stars, planetary transits and comets.

Transients characterize astronomical objects or phenomena whose duration of presentation may be from milliseconds to days, weeks, or even several years. This is in contrast to the timescale of the millions or billions of years during which the galaxies and their component stars in our universe have evolved. Singularly, the term is used for violent deep-sky events, such as supernovae, novae, dwarf nova outbursts, gamma-ray bursts, and tidal disruption events, as well as gravitational microlensing. [1]

Time-domain astronomy also involves long-term studies of variable stars and their changes on the timescale of minutes to decades. Variability studied can be intrinsic, including periodic or semi-regular pulsating stars, young stellar objects, stars with outbursts, asteroseismology studies; or extrinsic, which results from eclipses (in binary stars, planetary transits), stellar rotation (in pulsars, spotted stars), or gravitational microlensing events.

Modern time-domain astronomy surveys often uses robotic telescopes, automatic classification of transient events, and rapid notification of interested people. Blink comparators have long been used to detect differences between two photographic plates, and image subtraction became more used when digital photography eased the normalization of pairs of images. [2] Due to large fields of view required, the time-domain work involves storing and transferring a huge amount of data. This includes data mining techniques, classification, and the handling of heterogeneous data. [3]

The importance of time-domain astronomy was recognized in 2018 by German Astronomical Society by awarding a Karl Schwarzschild Medal to Andrzej Udalski for "pioneering contribution to the growth of a new field of astrophysics research, time-domain astronomy, which studies the variability of brightness and other parameters of objects in the universe in different time scales." [4] Also the 2017 Dan David Prize was awarded to the three leading researchers in the field of time-domain astronomy: Neil Gehrels (Swift Gamma-Ray Burst Mission), [5] Shrinivas Kulkarni (Palomar Transient Factory), [6] Andrzej Udalski (Optical Gravitational Lensing Experiment). [7]

History

Before the invention of telescopes, transient events that were visible to the naked eye, from within or near the Milky Way Galaxy, were very rare, and sometimes hundreds of years apart. However, such events were recorded in antiquity, such as the supernova in 1054 observed by Chinese, Japanese and Arab astronomers, and the event in 1572 known as "Tycho's Supernova" after Tycho Brahe, who studied it until it faded after two years. [8] Even though telescopes made it possible to see more distant events, their small fields of view – typically less than 1 square degree – meant that the chances of looking in the right place at the right time were low. Schmidt cameras and other astrographs with wide field were invented in the 20th century, but mostly used to survey the unchanging heavens.

Historically time domain astronomy has come to include appearance of comets and variable brightness of Cepheid-type variable stars. [2] Old astronomical plates exposed from the 1880s through the early 1990s held by the Harvard College Observatory are being digitized by the DASCH project. [9]

The interest in transients has intensified when large CCD detectors started to be available to the astronomical community. As telescopes with larger fields of view and larger detectors come into use in the 1990s, first massive and regular survey observations were initiated - pioneered by the gravitational microlensing surveys such as Optical Gravitational Lensing Experiment and the MACHO Project. These efforts, beside the discovery of the microlensing events itself, resulted in the orders of magnitude more variable stars known to mankind. [10] [11] Subsequent, dedicated sky surveys such as the Palomar Transient Factory, the spacecraft Gaia and the LSST, focused on expanding the coverage of the sky monitoring to fainter objects, more optical filters and better positional and proper motions measurement capabilities. In 2022, the Gravitational-wave Optical Transient Observer (GOTO) began looking for collisions between neutron stars. [12]

The ability of modern instruments to observe in wavelengths invisible to the human eye (radio waves, infrared, ultraviolet, X-ray) increases the amount of information that may be obtained when a transient is studied.

In radio astronomy the LOFAR is looking for radio transients. Radio time domain studies have long included pulsars and scintillation. Projects to look for transients in X-ray and gamma rays include Cherenkov Telescope Array, eROSITA, AGILE, Fermi, HAWC, INTEGRAL, MAXI, Swift Gamma-Ray Burst Mission and Space Variable Objects Monitor. Gamma ray bursts are a well known high energy electromagnetic transient. [13] The proposed ULTRASAT satellite will observe a field of more than 200 square degrees continuously in an ultraviolet wavelength that is particularly important for detecting supernovae within minutes of their occurrence.

See also

Related Research Articles

<span class="mw-page-title-main">Bohdan Paczyński</span> Polish astronomer (1940–2007)

Bohdan Paczyński or Bohdan Paczynski was a Polish astronomer notable for his theories and work in the fields of stellar evolution, accretion discs, and gamma ray bursts. He is the recipient of the Eddington Medal (1987), the Henry Draper Medal (1997), the Gold Medal of the Royal Astronomical Society (1999), and the Order of Polonia Restituta (2007).

<span class="mw-page-title-main">Siding Spring Observatory</span> Astronomic observatory in New South Wales, Australia

Siding Spring Observatory near Coonabarabran, New South Wales, Australia, part of the Research School of Astronomy & Astrophysics (RSAA) at the Australian National University (ANU), incorporates the Anglo-Australian Telescope along with a collection of other telescopes owned by the Australian National University, the University of New South Wales, and other institutions. The observatory is situated 1,165 metres (3,822 ft) above sea level in the Warrumbungle National Park on Mount Woorat, also known as Siding Spring Mountain. Siding Spring Observatory is owned by the Australian National University (ANU) and is part of the Mount Stromlo and Siding Spring Observatories research school.

<span class="mw-page-title-main">Neil Gehrels Swift Observatory</span> NASA satellite of the Explorer program

Neil Gehrels Swift Observatory, previously called the Swift Gamma-Ray Burst Explorer, is a NASA three-telescope space observatory for studying gamma-ray bursts (GRBs) and monitoring the afterglow in X-ray, and UV/Visible light at the location of a burst. It was launched on 20 November 2004, aboard a Delta II launch vehicle. Headed by principal investigator Neil Gehrels until his death in February 2017, the mission was developed in a joint partnership between Goddard Space Flight Center (GSFC) and an international consortium from the United States, United Kingdom, and Italy. The mission is operated by Pennsylvania State University as part of NASA's Medium Explorer program (MIDEX).

<span class="mw-page-title-main">Astronomical survey</span> General map or image of a region of the sky with no specific observational target

An astronomical survey is a general map or image of a region of the sky that lacks a specific observational target. Alternatively, an astronomical survey may comprise a set of images, spectra, or other observations of objects that share a common type or feature. Surveys are often restricted to one band of the electromagnetic spectrum due to instrumental limitations, although multiwavelength surveys can be made by using multiple detectors, each sensitive to a different bandwidth.

<span class="mw-page-title-main">Gravitational microlensing</span> Astronomical phenomenon due to the gravitational lens effect

Gravitational microlensing is an astronomical phenomenon caused by the gravitational lens effect. It can be used to detect objects that range from the mass of a planet to the mass of a star, regardless of the light they emit. Typically, astronomers can only detect bright objects that emit much light (stars) or large objects that block background light. These objects make up only a minor portion of the mass of a galaxy. Microlensing allows the study of objects that emit little or no light.

The eSTAR project was a multi-agent system that aimed to implement a heterogeneous network of robotic telescopes for automated observing, and ground-based follow-up to transient events. The project is a joint collaboration between the Astrophysics Group of the University of Exeter and the Astrophysics Research Institute at Liverpool John Moores University. The project was led by Alasdair Allan and Tim Naylor at the University of Exeter, and Iain Steele at Liverpool John Moores University. The eSTAR Project was affiliated with the RoboNet Consortium, and the global Heterogeneous Telescope Networks Consortium.

<span class="mw-page-title-main">Outline of astronomy</span> Overview of the scientific field of astronomy

The following outline is provided as an overview of and topical guide to astronomy:

<span class="mw-page-title-main">Optical Gravitational Lensing Experiment</span> Long-term variability sky survey

The Optical Gravitational Lensing Experiment (OGLE) is a Polish astronomical project based at the University of Warsaw that runs a long-term variability sky survey (1992–present). The main goals are the detection and classification of variable stars, discovery of microlensing events, dwarf novae, and studies of the structure of the Galaxy and the Magellanic Clouds. Since the project began in 1992, it has discovered a multitude of extrasolar planets, together with the first planet discovered using the transit method (OGLE-TR-56b) and gravitational microlensing. The project has been led by professor Andrzej Udalski since its inception.

<span class="mw-page-title-main">BOOTES</span>

BOOTES is a global network of robotic astronomical observatories with seven sites located in Spain, New Zealand, China, Mexico, South Africa and Chile. While the BOOTES-1 station in Spain is devoted to wide-field astronomy, the additional stations include a similar setup : the 0.6m diameter robotic telescope, the EMCCD camera at the Cassegrain focus and the u'g'r'i'ZY filterset, which makes the BOOTES Network a unique resource for combining the data from all the instruments worldwide.

<span class="mw-page-title-main">General Coordinates Network</span> System distributing location information about gamma-ray bursts

The General Coordinates Network (GCN), formerly known as the Gamma-ray burst Coordinates Network, is an open-source platform created by NASA to receive and transmit alerts about astronomical transient phenomena. This includes neutrino detections by observatories such as IceCube or Super-Kamiokande, gravitational wave events from the LIGO, Virgo and KAGRA interferometers, and gamma-ray bursts observed by Fermi, Swift or INTEGRAL. One of the main goals is to allow for follow-up observations of an event by other observatories, in hope to observe multi-messenger events.

<span class="mw-page-title-main">Vera C. Rubin Observatory</span> Astronomical observatory in Chile

The Vera C. Rubin Observatory, formerly known as the Large Synoptic Survey Telescope (LSST), is an astronomical observatory under construction in Chile. Its main task will be carrying out a synoptic astronomical survey, the Legacy Survey of Space and Time. The word "synoptic" is derived from the Greek words σύν and ὄψις, and describes observations that give a broad view of a subject at a particular time. The observatory is located on the El Peñón peak of Cerro Pachón, a 2,682-meter-high mountain in Coquimbo Region, in northern Chile, alongside the existing Gemini South and Southern Astrophysical Research Telescopes. The LSST Base Facility is located about 100 kilometres (62 mi) away from the observatory by road, in the town of La Serena. The observatory is named for Vera Rubin, an American astronomer who pioneered discoveries about galaxy rotation rates.

<span class="mw-page-title-main">Neil Gehrels</span> American astrophysicist

Cornelis A. "Neil" Gehrels was an American astrophysicist specializing in the field of gamma-ray astronomy. He was Chief of the Astroparticle Physics Laboratory at NASA's Goddard Space Flight Center (GSFC) from 1995 until his death, and was best known for his work developing the field from early balloon instruments to today's space observatories such as the NASA Swift mission, for which he was the principal investigator. He was leading the WFIRST wide-field infrared telescope forward toward a launch in the mid-2020s. He was a member of the National Academy of Sciences and the American Academy of Arts and Sciences.

The Palomar Transient Factory, was an astronomical survey using a wide-field survey camera designed to search for optical transient and variable sources such as variable stars, supernovae, asteroids and comets. The project completed commissioning in summer 2009, and continued until December 2012. It has since been succeeded by the Intermediate Palomar Transient Factory (iPTF), which itself transitioned to the Zwicky Transient Facility in 2017/18. All three surveys are registered at the MPC under the same observatory code for their astrometric observations.

Joshua Simon Bloom is an American astrophysicist and professor of astronomy at the University of California, Berkeley, and was the CTO and co-founder of the machine-learning company wise.io. He received a Bachelor of Arts in astronomy and astrophysics and physics from the Harvard College in 1996, an M.Phil from Cambridge University in 1997, and a PhD in astronomy from the California Institute of Technology in 2002. He was a Junior Fellow of the Harvard Society of Fellows from 2002 to 2005. He was the chair of the Astronomy Department at UC Berkeley from 2020 to 2023. His astronomy research focuses on gamma-ray bursts and other astrophysical transients such as supernovae and tidal disruption events. He is author of the book What Are Gamma-Ray Bursts? published by Princeton University Press in 2011.

The Astronomer's Telegram (ATel) is an internet-based short-notice publication service for quickly disseminating information on new astronomical observations. Examples include gamma-ray bursts, gravitational microlensing, supernovae, novae, or X-ray transients, but there are no restrictions on content matter. Telegrams are available instantly on the service's website, and distributed to subscribers via email digest within 24 hours.

<span class="mw-page-title-main">ULTRASAT</span>

ULTRASAT is a space telescope in a smallsat format that will detect and monitor transient astronomical events in the near-ultraviolet (220–280 nm) spectral region. ULTRASAT will observe a large patch of sky with a 210 square degrees field of view, alternating every six months between the southern and northern hemisphere. The satellite is planned to be launched into a geosynchronous orbit in early 2026. All ULTRASAT data will be transmitted to the ground in real time. Upon detection of a transient event, ULTRASAT will provide alerts within 20 minutes to other ground-based and space telescopes to be directed to the source for further observation of the event in other wavelength bands.

<span class="mw-page-title-main">MACS J1149 Lensed Star 1</span> Blue supergiant and second most distant star from earth detected in the constellation Leo

MACS J1149 Lensed Star 1, also known as Icarus, is a blue supergiant star observed through a gravitational lens. It is the seventh most distant individual star to have been detected so far, at approximately 14 billion light-years from Earth. Light from the star was emitted 4.4 billion years after the Big Bang. According to co-discoverer Patrick Kelly, the star is at least a hundred times more distant than the next-farthest non-supernova star observed, SDSS J1229+1122, and is the first magnified individual star seen.

<span class="mw-page-title-main">SN 2018cow</span> Supernova event of June 2018 in the constellation Hercules

SN 2018cow was a very powerful astronomical explosion, 10–100 times brighter than a normal supernova, spatially coincident with galaxy CGCG 137-068, approximately 200 million ly (60 million pc) distant in the Hercules constellation. It was discovered on 16 June 2018 by the ATLAS-HKO telescope, and had generated significant interest among astronomers throughout the world. Later, on 10 July 2018, and after AT 2018cow had significantly faded, astronomers, based on follow-up studies with the Nordic Optical Telescope (NOT), formally described AT 2018cow as SN 2018cow, a type Ib supernova, showing an "unprecedented spectrum for a supernova of this class"; although others, mostly at first but also more recently, have referred to it as a type Ic-BL supernova. An explanation to help better understand the unique features of AT 2018cow has been presented. AT2018cow is one of the few reported Fast Blue Optical Transients (FBOTs) observed in the Universe. In May 2020, however, a much more powerful FBOT than AT 2018cow was reportedly observed.

<span class="mw-page-title-main">GOTO (telescope array)</span>

The Gravitational-wave Optical Transient Observer (GOTO) is an array of robotic optical telescopes optimized for the discovery of optical counterparts to gravitational wave events and other multi-messenger signals. The array consists of a network of telescope systems, with each system consisting of eight 0.4m telescopes on a single mounting.

References

  1. Schmidt, Brian (20 April 2012). "Optical Transient Surveys". Proceedings of the International Astronomical Union . 7 (S285): 9–10. Bibcode:2012IAUS..285....9S. doi: 10.1017/S1743921312000129 .
  2. 1 2 Schmidt, Brian (28 September 2011). "Transient Studies have played a key role in the history of Astronomy" (PDF). Retrieved 5 May 2013.[ permanent dead link ]
  3. Graham, Matthew J.S.; G. Djorgovski; Ashish Mahabal; Ciro Donalek; Andrew Drake; Giuseppe Longo (August 2012). "Data challenges of time domain astronomy". Distributed and Parallel Databases. 30 (5–6): 371–384. arXiv: 1208.2480 . doi:10.1007/s10619-012-7101-7. S2CID   11166899.
  4. Press release from the Foundation for Polish Science
  5. "Neil Gehrels". 17 August 2021.
  6. "Shrinivas Kulkarni". 17 August 2021.
  7. "Andrzej Udalski". 17 August 2021.
  8. Lecture by Prof. Carolin Crawford, 2014, “The Transient Universe”
  9. Drout, Maria (12 November 2012). "A Big Step Backward for Time Domain Astronomy". Astrobites. Retrieved 5 May 2013.
  10. 68 000 variables in the Magellanic Clouds: K. Żebruń et al. (2001) Acta Astronomica, Vol. 51 (2001), No. 4
  11. 200 000 variables toward the Galactic bulge, P. Woźniak et al. (2002) Acta Astronomica, Vol. 52 (2002), No. 2
  12. Steeghs, D. T. H (2022). "The Gravitational-wave Optical Transient Observer (GOTO): Prototype performance and prospects for transient science". Monthly Notices of the Royal Astronomical Society. 511 (2): 2405–2422. arXiv: 2110.05539 . doi: 10.1093/mnras/stac013 .
  13. "Multi-Messenger Time Domain Astronomy Conference" . Retrieved 5 May 2013.

Further reading