Time-domain astronomy

Last updated
Light curve of NGC 2525 after a supernova SN2018gv.gif
Light curve of NGC 2525 after a supernova

Time-domain astronomy is the study of how astronomical objects change with time. Said to have begun with Galileo's Letters on Sunspots , the field has now naturally expanded to encompass variable objects beyond the Solar System. Temporal variation may originate from movement of the source, or changes in the object itself. Common targets include novae, supernovae, pulsating stars, flare stars, blazars and active galactic nuclei. Optical time domain surveys include OGLE, HAT-South, PanSTARRS, SkyMapper, ASAS, WASP, CRTS, GOTO, and the forthcoming LSST at the Vera C. Rubin Observatory.

Contents

Time-domain astronomy studies transient astronomical events ("transients"), which include various types of variable stars, including periodic, quasi-periodic, high proper motion stars, and lifecycle events (supernovae, kilonovae) or other changes in behavior or type. Non-stellar transients include asteroids, planetary transits and comets.

Transients characterize astronomical objects or phenomena whose duration of presentation may be from milliseconds to days, weeks, or even several years. This is in contrast to the timescale of the millions or billions of years during which the galaxies and their component stars in the universe have evolved. The term is used for violent deep-sky events, such as supernovae, novae, dwarf nova outbursts, gamma-ray bursts, and tidal disruption events, as well as gravitational microlensing. [1]

Time-domain astronomy also involves long-term studies of variable stars and their changes on the timescale of minutes to decades. Variability studied can be intrinsic, including periodic or semi-regular pulsating stars, young stellar objects, stars with outbursts, asteroseismology studies; or extrinsic, which results from eclipses (in binary stars, planetary transits), stellar rotation (in pulsars, spotted stars), or gravitational microlensing events.

Modern time-domain astronomy surveys often uses robotic telescopes, automatic classification of transient events, and rapid notification of interested people. Blink comparators have long been used to detect differences between two photographic plates, and image subtraction became more used when digital photography eased the normalization of pairs of images. [2] Due to large fields of view required, the time-domain work involves storing and transferring a huge amount of data. This includes data mining techniques, classification, and the handling of heterogeneous data. [3]

The importance of time-domain astronomy was recognized in 2018 by German Astronomical Society by awarding a Karl Schwarzschild Medal to Andrzej Udalski for "pioneering contribution to the growth of a new field of astrophysics research, time-domain astronomy, which studies the variability of brightness and other parameters of objects in the universe in different time scales." [4] Also the 2017 Dan David Prize was awarded to the three leading researchers in the field of time-domain astronomy: Neil Gehrels (Swift Gamma-Ray Burst Mission), [5] Shrinivas Kulkarni (Palomar Transient Factory), [6] Andrzej Udalski (Optical Gravitational Lensing Experiment). [7]

History

Before the invention of telescopes, transient events that were visible to the naked eye, from within or near the Milky Way Galaxy, were very rare, and sometimes hundreds of years apart. However, such events were recorded in antiquity, such as the supernova in 1054 observed by Chinese, Japanese and Arab astronomers, and the event in 1572 known as "Tycho's Supernova" after Tycho Brahe, who studied it until it faded after two years. [8] Even though telescopes made it possible to see more distant events, their small fields of view – typically less than 1 square degree – meant that the chances of looking in the right place at the right time were low. Schmidt cameras and other astrographs with wide field were invented in the 20th century, but mostly used to survey the unchanging heavens.

Historically time domain astronomy has come to include appearance of comets and variable brightness of Cepheid-type variable stars. [2] Old astronomical plates exposed from the 1880s through the early 1990s held by the Harvard College Observatory are being digitized by the DASCH project. [9]

The interest in transients has intensified when large CCD detectors started to be available to the astronomical community. As telescopes with larger fields of view and larger detectors come into use in the 1990s, first massive and regular survey observations were initiated - pioneered by the gravitational microlensing surveys such as Optical Gravitational Lensing Experiment and the MACHO Project. These efforts, beside the discovery of the microlensing events itself, resulted in the orders of magnitude more variable stars known to mankind. [10] [11] Subsequent, dedicated sky surveys such as the Palomar Transient Factory, the spacecraft Gaia and the LSST, focused on expanding the coverage of the sky monitoring to fainter objects, more optical filters and better positional and proper motions measurement capabilities. In 2022, the Gravitational-wave Optical Transient Observer (GOTO) began looking for collisions between neutron stars. [12]

The ability of modern instruments to observe in wavelengths invisible to the human eye (radio waves, infrared, ultraviolet, X-ray) increases the amount of information that may be obtained when a transient is studied.

In radio astronomy the LOFAR is looking for radio transients. Radio time domain studies have long included pulsars and scintillation. Projects to look for transients in X-ray and gamma rays include Cherenkov Telescope Array, eROSITA, AGILE, Fermi, HAWC, INTEGRAL, MAXI, Swift Gamma-Ray Burst Mission and Space Variable Objects Monitor. Gamma ray bursts are a well known high energy electromagnetic transient. [13] The proposed ULTRASAT satellite will observe a field of more than 200 square degrees continuously in an ultraviolet wavelength that is particularly important for detecting supernovae within minutes of their occurrence.

See also

Related Research Articles

<span class="mw-page-title-main">Gamma-ray burst</span> Flashes of gamma rays from distant galaxies

In gamma-ray astronomy, gamma-ray bursts (GRBs) are immensely energetic events occurring in distant galaxies which represent the brightest and "most powerful class of explosion in the universe." These extreme electromagnetic events are second only to the Big Bang as the most energetic and luminous phenomenon ever known. Gamma-ray bursts can last from ten milliseconds to several hours. After the initial flash of gamma rays, a longer-lived § afterglow is emitted, usually in the longer wavelengths of X-ray, ultraviolet, optical, infrared, microwave or radio frequencies.

<span class="mw-page-title-main">Bohdan Paczyński</span> Polish astronomer (1940–2007)

Bohdan Paczyński or Bohdan Paczynski was a Polish astronomer notable for his theories and work in the fields of stellar evolution, accretion discs, and gamma ray bursts. He is the recipient of the Eddington Medal (1987), the Henry Draper Medal (1997), the Gold Medal of the Royal Astronomical Society (1999), and the Order of Polonia Restituta (2007).

<span class="mw-page-title-main">Siding Spring Observatory</span> Astronomic observatory in New South Wales, Australia

Siding Spring Observatory near Coonabarabran, New South Wales, Australia, part of the Research School of Astronomy & Astrophysics (RSAA) at the Australian National University (ANU), incorporates the Anglo-Australian Telescope along with a collection of other telescopes owned by the Australian National University, the University of New South Wales, and other institutions. The observatory is situated 1,165 metres (3,822 ft) above sea level in the Warrumbungle National Park on Mount Woorat, also known as Siding Spring Mountain. Siding Spring Observatory is owned by the Australian National University (ANU) and is part of the Mount Stromlo and Siding Spring Observatories research school.

<span class="mw-page-title-main">Neil Gehrels Swift Observatory</span> NASA satellite of the Explorer program

Neil Gehrels Swift Observatory, previously called the Swift Gamma-Ray Burst Explorer, is a NASA three-telescope space observatory for studying gamma-ray bursts (GRBs) and monitoring the afterglow in X-ray, and UV/visible light at the location of a burst. It was launched on 20 November 2004, aboard a Delta II launch vehicle. Headed by principal investigator Neil Gehrels until his death in February 2017, the mission was developed in a joint partnership between Goddard Space Flight Center (GSFC) and an international consortium from the United States, United Kingdom, and Italy. The mission is operated by Pennsylvania State University as part of NASA's Medium Explorer program (MIDEX).

<span class="mw-page-title-main">Gravitational microlensing</span> Astronomical phenomenon due to the gravitational lens effect

Gravitational microlensing is an astronomical phenomenon caused by the gravitational lens effect. It can be used to detect objects that range from the mass of a planet to the mass of a star, regardless of the light they emit. Typically, astronomers can only detect bright objects that emit much light (stars) or large objects that block background light. These objects make up only a minor portion of the mass of a galaxy. Microlensing allows the study of objects that emit little or no light.

<span class="mw-page-title-main">Konkoly Observatory</span> Observatory

Konkoly Observatory is an astronomical observatory located in Budapest, Hungary is part of the Research Centre for Astronomy and Earth Sciences and belongs to the HUN-REN Magyar Kutatási Hálózat. Konkoly Observatory was founded in 1871 by Hungarian astronomer Miklós Konkoly-Thege (1842–1916) as a private observatory, and was donated to the state in 1899. Konkoly Observatory, officially known as HUN-REN CSFK Konkoly Thege Miklós Csillagászati Intézet in Hungarian, is the largest astronomical research institute in Hungary, and hosts the largest telescopes in the country. The Observatory has more than 60 researchers, a quarter of them are non-Hungarian.

<span class="mw-page-title-main">Outline of astronomy</span> Overview of the scientific field of astronomy

The following outline is provided as an overview of and topical guide to astronomy:

<span class="mw-page-title-main">Optical Gravitational Lensing Experiment</span> Long-term variability sky survey

The Optical Gravitational Lensing Experiment (OGLE) is a Polish astronomical project based at the University of Warsaw that runs a long-term variability sky survey (1992–present). The main goals are the detection and classification of variable stars, discovery of microlensing events, dwarf novae, and studies of the structure of the Galaxy and the Magellanic Clouds. Since the project began in 1992, it has discovered a multitude of extrasolar planets, together with the first planet discovered using the transit method (OGLE-TR-56b) and gravitational microlensing. The project has been led by professor Andrzej Udalski since its inception.

<span class="mw-page-title-main">BOOTES</span> Network of robotic astronomical observatories

BOOTES is a global network of robotic astronomical observatories with seven sites located in Spain, New Zealand, China, Mexico, South Africa and Chile. While the BOOTES-1 station in Spain is devoted to wide-field astronomy, the additional stations include a similar setup : the 0.6m diameter robotic telescope, the EMCCD camera at the Cassegrain focus and the u'g'r'i'ZY filterset, which makes the BOOTES Network a unique resource for combining the data from all the instruments worldwide.

<span class="mw-page-title-main">General Coordinates Network</span> System distributing location information about gamma-ray bursts

The General Coordinates Network (GCN), formerly known as the Gamma-ray burst Coordinates Network, is an open-source platform created by NASA to receive and transmit alerts about astronomical transient phenomena. This includes neutrino detections by observatories such as IceCube or Super-Kamiokande, gravitational wave events from the LIGO, Virgo and KAGRA interferometers, and gamma-ray bursts observed by Fermi, Swift or INTEGRAL. One of the main goals is to allow for follow-up observations of an event by other observatories, in hope to observe multi-messenger events.

<span class="mw-page-title-main">Vera C. Rubin Observatory</span> Astronomical observatory in Chile

The Vera C. Rubin Observatory, formerly known as the Large Synoptic Survey Telescope (LSST), is an astronomical observatory under construction in Chile. Its main task will be carrying out a synoptic astronomical survey, the Legacy Survey of Space and Time. The word "synoptic" is derived from the Greek words σύν and ὄψις, and describes observations that give a broad view of a subject at a particular time. The observatory is located on the El Peñón peak of Cerro Pachón, a 2,682-meter-high (8,799 ft) mountain in Coquimbo Region, in northern Chile, alongside the existing Gemini South and Southern Astrophysical Research Telescopes. The LSST Base Facility is located about 100 kilometres away from the observatory by road, in the city of La Serena. The observatory is named for Vera Rubin, an American astronomer who pioneered discoveries about galaxy rotation rates.

<span class="mw-page-title-main">Neil Gehrels</span> American astrophysicist

Cornelis A. "Neil" Gehrels was an American astrophysicist specializing in the field of gamma-ray astronomy. He was Chief of the Astroparticle Physics Laboratory at NASA's Goddard Space Flight Center (GSFC) from 1995 until his death, and was best known for his work developing the field from early balloon instruments to today's space observatories such as the NASA Swift mission, for which he was the principal investigator. He was leading the WFIRST wide-field infrared telescope forward toward a launch in the mid-2020s. He was a member of the National Academy of Sciences and the American Academy of Arts and Sciences.

<span class="mw-page-title-main">Gamma-ray burst progenitors</span> Types of celestial objects that can emit gamma-ray bursts

Gamma-ray burst progenitors are the types of celestial objects that can emit gamma-ray bursts (GRBs). GRBs show an extraordinary degree of diversity. They can last anywhere from a fraction of a second to many minutes. Bursts could have a single profile or oscillate wildly up and down in intensity, and their spectra are highly variable unlike other objects in space. The near complete lack of observational constraint led to a profusion of theories, including evaporating black holes, magnetic flares on white dwarfs, accretion of matter onto neutron stars, antimatter accretion, supernovae, hypernovae, and rapid extraction of rotational energy from supermassive black holes, among others.

X-ray emission occurs from many celestial objects. These emissions can have a pattern, occur intermittently, or as a transient astronomical event. In X-ray astronomy many sources have been discovered by placing an X-ray detector above the Earth's atmosphere. Often, the first X-ray source discovered in many constellations is an X-ray transient. These objects show changing levels of X-ray emission. NRL astronomer Dr. Joseph Lazio stated: " ... the sky is known to be full of transient objects emitting at X- and gamma-ray wavelengths, ...". There are a growing number of recurrent X-ray transients. In the sense of traveling as a transient, the only stellar X-ray source that does not belong to a constellation is the Sun. As seen from Earth, the Sun moves from west to east along the ecliptic, passing over the course of one year through the twelve constellations of the Zodiac, and Ophiuchus.

The Palomar Transient Factory, was an astronomical survey using a wide-field survey camera designed to search for optical transient and variable sources such as variable stars, supernovae, asteroids and comets. The project completed commissioning in summer 2009, and continued until December 2012. It has since been succeeded by the Intermediate Palomar Transient Factory (iPTF), which itself transitioned to the Zwicky Transient Facility in 2017/18. All three surveys are registered at the MPC under the same observatory code for their astrometric observations.

<span class="mw-page-title-main">ULTRASAT</span> Planned space telescope

ULTRASAT is a space telescope in a smallsat format that will detect and monitor transient astronomical events in the near-ultraviolet (220–280 nm) spectral region. ULTRASAT will observe a large patch of sky with a 210 square degrees field of view, alternating every six months between the southern and northern hemisphere. The satellite is planned to be launched into a geosynchronous orbit in early 2026. All ULTRASAT data will be transmitted to the ground in real time. Upon detection of a transient event, ULTRASAT will provide alerts within 20 minutes to other ground-based and space telescopes to be directed to the source for further observation of the event in other wavelength bands.

A failed supernova is an astronomical event in time domain astronomy in which a star suddenly brightens as in the early stage of a supernova, but then does not increase to the massive flux of a supernova. They could be counted as a subcategory of supernova imposters. They have sometimes misleadingly been called unnovae.

<span class="mw-page-title-main">Hypernova</span> Supernova that ejects a large mass at unusually high velocity

A hypernova is a very energetic supernova which is believed to result from an extreme core collapse scenario. In this case, a massive star collapses to form a rotating black hole emitting twin astrophysical jets and surrounded by an accretion disk. It is a type of stellar explosion that ejects material with an unusually high kinetic energy, an order of magnitude higher than most supernovae, with a luminosity at least 10 times greater. Hypernovae release such intense gamma rays that they often appear similar to a type Ic supernova, but with unusually broad spectral lines indicating an extremely high expansion velocity. Hypernovae are one of the mechanisms for producing long gamma ray bursts (GRBs), which range from 2 seconds to over a minute in duration. They have also been referred to as superluminous supernovae, though that classification also includes other types of extremely luminous stellar explosions that have different origins.

<span class="mw-page-title-main">GOTO (telescope array)</span> Array of robotic optical telescopes

The Gravitational-wave Optical Transient Observer (GOTO) is an array of robotic optical telescopes optimized for the discovery of optical counterparts to gravitational wave events and other multi-messenger signals. The array consists of a network of telescope systems, with each system consisting of eight 0.4m telescopes on a single mounting.

References

  1. Schmidt, Brian (20 April 2012). "Optical Transient Surveys". Proceedings of the International Astronomical Union . 7 (S285): 9–10. Bibcode:2012IAUS..285....9S. doi: 10.1017/S1743921312000129 .
  2. 1 2 Schmidt, Brian (28 September 2011). "Transient Studies have played a key role in the history of Astronomy" (PDF). Retrieved 5 May 2013.[ permanent dead link ]
  3. Graham, Matthew J.S.; G. Djorgovski; Ashish Mahabal; Ciro Donalek; Andrew Drake; Giuseppe Longo (August 2012). "Data challenges of time domain astronomy". Distributed and Parallel Databases. 30 (5–6): 371–384. arXiv: 1208.2480 . doi:10.1007/s10619-012-7101-7. S2CID   11166899.
  4. Press release from the Foundation for Polish Science
  5. "Neil Gehrels". 17 August 2021.
  6. "Shrinivas Kulkarni". 17 August 2021.
  7. "Andrzej Udalski". 17 August 2021.
  8. Lecture by Prof. Carolin Crawford, 2014, “The Transient Universe”
  9. Drout, Maria (12 November 2012). "A Big Step Backward for Time Domain Astronomy". Astrobites. Retrieved 5 May 2013.
  10. 68 000 variables in the Magellanic Clouds: K. Żebruń et al. (2001) Acta Astronomica, Vol. 51 (2001), No. 4
  11. 200 000 variables toward the Galactic bulge, P. Woźniak et al. (2002) Acta Astronomica, Vol. 52 (2002), No. 2
  12. Steeghs, D. T. H (2022). "The Gravitational-wave Optical Transient Observer (GOTO): Prototype performance and prospects for transient science". Monthly Notices of the Royal Astronomical Society. 511 (2): 2405–2422. arXiv: 2110.05539 . doi: 10.1093/mnras/stac013 .
  13. "Multi-Messenger Time Domain Astronomy Conference" . Retrieved 5 May 2013.

Further reading