Event type | Astronomical radio source, astrophysical X-ray source |
---|---|
Type Ia [1] | |
Date | November 1572 |
Constellation | Cassiopeia |
Right ascension | 0h 25.3m |
Declination | +64° 09′ |
Epoch | ? |
Galactic coordinates | G.120.1+1.4 |
Distance | between 8,000 ly (2.5 kpc) and 9,800 ly (3 kpc) |
Remnant | Nebula |
Host | Milky Way |
Progenitor | Unknown |
Progenitor type | Unknown |
Colour (B-V) | ~1 |
Peak apparent magnitude | −4 |
Other designations | SN 1572, HR 92, SN 1572A, SNR G120.1+01.4, SNR G120.2+01.4, 1ES 0022+63.8, 1RXS J002509.2+640946, B Cas, BD+63 39a, 8C 0022+638, 4C 63.01, 3C 10, 3C 10.0, 2C 34, RRF 1174, 1XRS 00224+638, 2U 0022+63, 3A 0022+638, 3CR 10, 3U 0022+63, 4U 0022+63, AJG 112, ASB 1, BG 0022+63, CTB 4, KR 101, VRO 63.00.01, [DGW65] 3, PBC J0024.9+6407, F3R 3628, WB 0022+6351, CGPSE 107, GB6 B0022+6352 |
Preceded by | SN 1181 |
Followed by | SN 1604 |
Related media on Commons | |
SN 1572 ( Tycho's Star, Tycho's Nova, Tycho's Supernova), or B Cassiopeiae (B Cas), was a supernova of Type Ia in the constellation Cassiopeia, one of eight supernovae visible to the naked eye in historical records. It appeared in early November 1572 and was independently discovered by many individuals.
Its supernova remnant has been observed optically but was first detected at radio wavelengths. It is often known as 3C 10, a radio-source designation, although increasingly as Tycho's supernova remnant.
The appearance of the Milky Way supernova of 1572 belongs among the most important observation events in the history of astronomy. The appearance of the "new star" helped to revise ancient models of the heavens and to speed on a revolution in astronomy that began with the realisation of the need to produce better astrometric star catalogues, and thus the need for more precise astronomical observing instruments. It also challenged the Aristotelian dogma of the unchangeability of the realm of stars. [2]
The supernova of 1572 is often called "Tycho's supernova", because of Tycho Brahe's extensive work De nova et nullius aevi memoria prius visa stella ("Concerning the Star, new and never before seen in the life or memory of anyone", published in 1573 with reprints overseen by Johannes Kepler in 1602 and 1610), a work containing both Brahe's own observations and the analysis of sightings from many other observers. Comparisons between Brahe's observations and those of Spanish scientist Jerónimo Muñoz [3] revealed that the object was more distant than the Moon. [4] This led Brahe to approach the Great Comet of 1577 as an astronomical body as well. [2] Other Europeans to sight the supernova included Wolfgang Schuler, Christopher Clavius, Thomas Digges, John Dee, Francesco Maurolico, Tadeáš Hájek and Bartholomäus Reisacher . [5]
In England, Queen Elizabeth had the mathematician and astrologer Thomas Allen come and visit "to have his advice about the new star that appeared in the Swan or Cassiopeia ... to which he gave his judgement very learnedly", as the antiquary John Aubrey recorded in his memoranda a century later. [6]
In Ming dynasty China, the star became an issue between Zhang Juzheng and the young Wanli Emperor: in accordance with the cosmological tradition, the emperor was warned to consider his misbehavior, since the new star was interpreted as an evil omen. [7]
The more reliable contemporary reports state that the new star itself burst forth soon after November 2, 1572 and by November 11 it was already brighter than Jupiter. Around November 16, 1572, it reached its peak brightness at about magnitude −4.0, with some descriptions giving it as equal to Venus when that planet was at its brightest. [8] Contrarily, Brahe described the supernova as "brighter than Venus". [2] The supernova remained visible to the naked eye into early 1574, gradually fading until it disappeared from view. [8]
The supernova was classified as type I on the basis of its historical light curve soon after type I and type II supernovae were first defined on the basis of their spectra. [9] The X-ray spectrum of the remnant showed that it was almost certainly of type Ia, but its detailed classification within the type Ia class continued to be debated until the spectrum of its light at peak luminosity was measured in a light echo in 2008. This gave final confirmation that it was a normal type Ia. [1]
The classification as a type Ia supernova of normal luminosity allows an accurate measure of the distance to SN 1572. The peak absolute magnitude can be calculated from the B-band decline rate to be −19.0±0.3. Given estimates of the peak apparent magnitude and the known extinction of 1.86±0.2 magnitudes, the distance is 3.8+1.5
−0.9 kpc. [1]
The distance to the supernova remnant has been estimated to between 2 and 5 kpc (approx. 6,500 and 16,300 light-years), with recent studies suggesting a narrower range of 2.5 and 3 kpc (approximately 8,000 and 9,800 light-years). [10] Tycho's SNR has a roughly spherical morphology and spreads over an angular diameter of about 8 arcminutes. Its physical size corresponds to radius of the order of a few parsecs. Its measured expansion rate is about 11–12%/year in radio and X-ray. The average forward shock speed is between 4,000 and 5,000 km/s, dropping to lower speed when encountering local interstellar clouds. [11] An older source says that the gas shell has reached an apparent diameter of 3.7 arcminutes. [12]
The search for a supernova remnant was futile until 1952, when Robert Hanbury Brown and Cyril Hazard reported a radio detection at 158.5 MHz, obtained at the Jodrell Bank Observatory. [13] This was confirmed, and its position more accurately measured in 1957 by Baldwin and Edge using the Cambridge Radio Telescope working at a wavelength of 1.9 m. [14] The remnant was also identified tentatively in the second Cambridge Catalogue of Radio Sources as object "2C 34", and more firmly as "3C 10" in the third Cambridge list. [15]
There is no dispute that 3C 10 is the remnant of the supernova observed in 1572–1573. Following a 1964 review article by Minkowski, [16] the designation 3C 10 appears to be that most commonly used in the literature when referring to the radio remnant of B Cas, although some authors use the tabulated galactic designation G120.7+2.1 and many authors commonly refer to it as Tycho's supernova remnant. Because the radio remnant was reported before the optical supernova-remnant wisps were discovered, the designation 3C 10 is used by some to signify the remnant at all wavelengths.
An X-ray source designated Cepheus X-1 (or Cep X-1) was detected by the Uhuru X-ray observatory at 4U 0022+63. Earlier catalog designations are X120+2 and XRS 00224+638. Cepheus X-1 is actually in the constellation Cassiopeia, and it is SN 1572, the Tycho SNR. [17]
The supernova remnant of B Cas was discovered in the 1960s by scientists with a Palomar Mountain telescope as a very faint nebula. It was later photographed by a telescope on the international ROSAT spacecraft. The supernova has been confirmed as Type Ia, [1] in which a white dwarf star has accreted matter from a companion until it approaches the Chandrasekhar limit and explodes. This type of supernova does not typically create the spectacular nebula more typical of Type II supernovas, such as SN 1054 which created the Crab Nebula. A shell of gas is still expanding from its center at about 9,000 km/s. A recent study indicates a rate of expansion below 5,000 km/s. [19]
In October 2004, a letter in Nature reported the discovery of a G2 star, similar in type to our own Sun and named Tycho G. [20] It is thought to be the companion star that contributed mass to the white dwarf that ultimately resulted in the supernova. A subsequent study, published in March 2005, revealed further details about this star: Tycho G was probably a main-sequence star or subgiant before the explosion, but some of its mass was stripped away and its outer layers were shock-heated by the supernova. [21]
Tycho G's current velocity is perhaps the strongest evidence that it was the companion star to the white dwarf, as it is traveling at a rate of 136 km/s, which is more than four times faster than the mean velocity of other stars in its stellar neighbourhood. This find has been challenged in recent years. The star is relatively far away from the center and does not show rotation which might be expected of a companion star. [21]
In Gaia DR2, the star was calculated to be 6,400+2,000
−1,200 light-years away, on the lower end of SN 1572's possible range of distances, which in turn lowered the calculated velocity from 136 km/s to only 56 km/s.
In the ninth episode of James Joyce's Ulysses , Stephen Dedalus associates the appearance of the supernova with the youthful William Shakespeare, and in the November 1998 issue of Sky & Telescope , three researchers from Southwest Texas State University, Don Olson and Russell Doescher of the Physics Department and Marilynn Olson of the English Department, argued that this supernova is described in Shakespeare's Hamlet , specifically by Bernardo in Act I, Scene i. [22]
The supernova inspired the poem "Al Aaraaf" by Edgar Allan Poe. [23]
The protagonist in Arthur C. Clarke's 1955 short story "The Star" casually mentions the supernova. It is a major element in Frederik Pohl's spoof science article, "The Martian Star-Gazers", first published in Galaxy Science Fiction Magazine in 1962.
A supernova is a powerful and luminous explosion of a star. A supernova occurs during the last evolutionary stages of a massive star, or when a white dwarf is triggered into runaway nuclear fusion. The original object, called the progenitor, either collapses to a neutron star or black hole, or is completely destroyed to form a diffuse nebula. The peak optical luminosity of a supernova can be comparable to that of an entire galaxy before fading over several weeks or months.
SN 1604, also known as Kepler's Supernova, Kepler's Nova or Kepler's Star, was a Type Ia supernova that occurred in the Milky Way, in the constellation Ophiuchus. Appearing in 1604, it is the most recent supernova in the Milky Way galaxy to have been unquestionably observed by the naked eye, occurring no farther than 6 kiloparsecs from Earth. Before the adoption of the current naming system for supernovae, it was named for Johannes Kepler, the German astronomer who described it in De Stella Nova.
A supernova remnant (SNR) is the structure resulting from the explosion of a star in a supernova. The supernova remnant is bounded by an expanding shock wave, and consists of ejected material expanding from the explosion, and the interstellar material it sweeps up and shocks along the way.
The Crab Nebula is a supernova remnant and pulsar wind nebula in the constellation of Taurus. The common name comes from a drawing that somewhat resembled a crab with arms produced by William Parsons, 3rd Earl of Rosse, in 1842 or 1843 using a 36-inch (91 cm) telescope. The nebula was discovered by English astronomer John Bevis in 1731. It corresponds with a bright supernova observed in 1054 C.E. by Native American, Japanese, and Arabic stargazers ; this supernova was also recorded by Chinese astronomers as a guest star. The nebula was the first astronomical object identified that corresponds with a historically-observed supernova explosion.
A super-luminous supernova is a type of stellar explosion with a luminosity 10 or more times higher than that of standard supernovae. Like supernovae, SLSNe seem to be produced by several mechanisms, which is readily revealed by their light-curves and spectra. There are multiple models for what conditions may produce an SLSN, including core collapse in particularly massive stars, millisecond magnetars, interaction with circumstellar material, or pair-instability supernovae.
3C 58 or 3C58 is a pulsar and supernova remnant within the Milky Way. The object is listed as No. 58 in the Third Cambridge Catalogue of Radio Sources.
First observed between August 4 and August 6, 1181, Chinese and Japanese astronomers recorded the supernova now known as SN 1181 in eight separate texts. One of only five supernovae in the Milky Way confidently identified in pre-telescopic records, it appeared in the constellation Cassiopeia and was visible and motionless against the fixed stars for 185 days. F. R. Stephenson first recognized that the 1181 AD "guest star" must be a supernova, because such a bright transient that lasts for 185 days and does not move in the sky can only be a galactic supernova.
SN 1006 was a supernova that is likely the brightest observed stellar event in recorded history, reaching an estimated −7.5 visual magnitude, and exceeding roughly sixteen times the brightness of Venus. Appearing between April 30 and May 1, 1006, in the constellation of Lupus, this "guest star" was described by observers across China, Japan, modern-day Iraq, Egypt, and Europe, and was possibly recorded in North American petroglyphs. Some reports state it was clearly visible in the daytime. Modern astronomers now consider its distance from Earth to be about 7,200 light-years or 2,200 parsecs.
A Type Ia supernova is a type of supernova that occurs in binary systems in which one of the stars is a white dwarf. The other star can be anything from a giant star to an even smaller white dwarf.
SN 185 was a transient astronomical event observed in the year AD 185, likely a supernova. The transient occurred in the direction of Alpha Centauri, between the constellations Circinus and Centaurus, centered at RA 14h 43m Dec −62° 30′, in Circinus. This "guest star" was observed by Chinese astronomers in the Book of Later Han (后汉书), and might have been recorded in Roman literature. It remained visible in the night sky for eight months. This is believed to be the first supernova for which records exist.
The known history of supernova observation goes back to 1006 AD. All earlier proposals for supernova observations are speculations with many alternatives.
Type Ib and Type Ic supernovae are categories of supernovae that are caused by the stellar core collapse of massive stars. These stars have shed or been stripped of their outer envelope of hydrogen, and, when compared to the spectrum of Type Ia supernovae, they lack the absorption line of silicon. Compared to Type Ib, Type Ic supernovae are hypothesized to have lost more of their initial envelope, including most of their helium. The two types are usually referred to as stripped core-collapse supernovae.
A light echo is a physical phenomenon caused by light reflected off surfaces distant from the source, and arriving at the observer with a delay relative to this distance. The phenomenon is analogous to an echo of sound, but due to the much faster speed of light, it mostly manifests itself only over astronomical distances.
Tycho G has been proposed as the surviving binary companion star of the SN 1572 supernova event. The star is located about 6,400±1,500 light-years away in the constellation Cassiopeia. It is a subgiant, similar to the Sun in temperature, but more evolved and luminous.
Pilar Ruiz-Lapuente is an astrophysicist working as a professor at the University of Barcelona. Her work has included research on type Ia supernovae. In 2004, she led the team that searched for the companion star to the white dwarf that became supernova SN 1572, observed by Tycho Brahe, among others. Ruiz-Lapuente's research on supernovae contributed to the discovery of the accelerating expansion of the universe.
SN 1895B was a supernova event in the irregular dwarf galaxy NGC 5253, positioned 16″ east and 23″ north of the galactic center. It is among the closest known extragalactic supernova events. The supernova was discovered by Williamina Fleming on December 12, 1895 after noticing an unusual spectrum on a photographic plate taken July 18, 1895, and was initially given the variable star designation Z Centauri. The light curve is consistent with an event that began ~15 days before the discovery plate was taken, and this indicates the supernova reached a peak visual magnitude of up to 8.49±0.03.
A hypernova is a very energetic supernova which is believed to result from an extreme core collapse scenario. In this case, a massive star collapses to form a rotating black hole emitting twin astrophysical jets and surrounded by an accretion disk. It is a type of stellar explosion that ejects material with an unusually high kinetic energy, an order of magnitude higher than most supernovae, with a luminosity at least 10 times greater. Hypernovae release such intense gamma rays that they often appear similar to a type Ic supernova, but with unusually broad spectral lines indicating an extremely high expansion velocity. Hypernovae are one of the mechanisms for producing long gamma ray bursts (GRBs), which range from 2 seconds to over a minute in duration. They have also been referred to as superluminous supernovae, though that classification also includes other types of extremely luminous stellar explosions that have different origins.
NGC 4424 is a spiral galaxy located in the equatorial constellation of Virgo. It was discovered February 27, 1865 by German astronomer Heinrich Louis d'Arrest. This galaxy is located at a distance of 13.5 million light years and is receding with a heliocentric radial velocity of 442 km/s. It has a morphological class of SB(s)a, which normally indicates a spiral galaxy with a barred structure (SB), no inner ring feature (s), and tightly-wound spiral arms (a). The galactic plane is inclined at an angle of 62° to the line of sight from the Earth. It is a likely member of the Virgo Cluster of galaxies.
Ken'ichi Nomoto is a Japanese astrophysicist and astronomer, known for his research on stellar evolution, supernovae, and the origin of heavy elements.
Media related to SN 1572 at Wikimedia Commons