Local Bubble

Last updated

Local Bubble
Superbubble
Galaxymap.com, map 100 parsecs (2022).png
Map of open star clusters and bright stars in the Local Bubble, viewed from top down
Observation data
Distance0  ly    (0  pc)
Physical characteristics
Radius 500 ly
DesignationsLocal Hot Bubble, LHB, [1] Local Bubble, Local Interstellar Bubble [2]
See also: Lists of nebulae

The Local Bubble, or Local Cavity, [3] is a relative cavity in the interstellar medium (ISM) of the Orion Arm in the Milky Way. It contains the closest of celestial neighbours and among others, the Local Interstellar Cloud (which contains the Solar System), the neighbouring G-Cloud, the Ursa Major moving group (the closest stellar moving group) and the Hyades (the nearest open cluster). It is estimated to be at least 1000  light years in size,[ clarification needed ] and is defined by its neutral-hydrogen density of about 0.05  atoms/cm3, or approximately one tenth of the average for the ISM in the Milky Way (0.5 atoms/cm3), and one sixth that of the Local Interstellar Cloud (0.3 atoms/cm3).[ dubious discuss ] [4]

Contents

The exceptionally sparse gas of the Local Bubble is the result of supernovae that exploded within the past ten to twenty million years. Geminga, a pulsar in the constellation Gemini, was once thought to be the remnant of a single supernova that created the Local Bubble, but now multiple supernovae in subgroup B1 of the Pleiades moving group are thought to have been responsible, [5] becoming a remnant supershell. [6] Other research suggests that the subgroups Lower Centaurus–Crux (LCC) and Upper Centaurus–Lupus (UCL), of the Scorpius–Centaurus association created both the local bubble and the Loop I Bubble. With LCC being responsible for the Local Bubble and UCL being responsible for the Loop I Bubble. [7] It was found that 14 to 20 supernovae originated from LCC and UCL, which could have formed these bubbles. [8]

Description

The Solar System has been traveling through the region currently occupied by the Local Bubble for the last five to ten million years. [9] Its current location lies in the Local Interstellar Cloud (LIC), a minor region of denser material within the Bubble. The LIC formed where the Local Bubble and the Loop I Bubble met. The gas within the LIC has a density of approximately 0.3 atoms per cubic centimeter.

The Local Bubble is not spherical, but seems to be narrower in the galactic plane, becoming somewhat egg-shaped or elliptical, and may widen above and below the galactic plane, becoming shaped like an hourglass. It abuts other bubbles of less dense interstellar medium (ISM), including, in particular, the Loop I Bubble. The Loop I Bubble was cleared, heated and maintained by supernovae and stellar winds in the Scorpius–Centaurus association, some 500 light years from the Sun. The Loop I Bubble contains the star Antares (also known as α Sco, or Alpha Scorpii), as shown on the diagram above right. Several tunnels connect the cavities of the Local Bubble with the Loop I Bubble, called the "Lupus Tunnel". [10] Other bubbles which are adjacent to the Local Bubble are the Loop II Bubble and the Loop III Bubble. In 2019, researchers found interstellar iron in Antarctica which they relate to the Local Interstellar Cloud, which might be related to the formation of the Local Bubble. [11]

Local stars in the galactic plane (click for rotation) Spin view local bubble with stars.gif
Local stars in the galactic plane (click for rotation)

Observation

Launched in February 2003 and active until April 2008, a small space observatory called Cosmic Hot Interstellar Plasma Spectrometer (CHIPS or CHIPSat) examined the hot gas within the Local Bubble. [12] The Local Bubble was also the region of interest for the Extreme Ultraviolet Explorer mission (1992–2001), which examined hot EUV sources within the bubble. Sources beyond the edge of the bubble were identified but attenuated by the denser interstellar medium. In 2019, the first 3D map of the Local Bubble has been reported using the observations of diffuse interstellar bands. [13] In 2020, the shape of the dusty envelope surrounding the Local Bubble was retrieved and modeled from 3D maps of the dust density obtained from stellar extinction data. [14]

Impact on star formation

As the bubble expands it sweeps interstellar gas and dust which collapse to form new stars on its surface but not inside. The Sun entered the bubble around five million years ago. Localbubble formation.gif
As the bubble expands it sweeps interstellar gas and dust which collapse to form new stars on its surface but not inside. The Sun entered the bubble around five million years ago.
Local Bubble and its molecular clouds Localbubble.png
Local Bubble and its molecular clouds

In January 2022, a paper in the journal Nature found that observations and modelling had determined that the action of the expanding surface of the bubble had collected gas and debris and was responsible for the formation of all young, nearby stars. [17]

These new stars are typically in molecular clouds like the Taurus molecular cloud and the open star cluster Pleiades.

Connection to radioactive isotopes on earth

On earth several radioactive isotopes were connected to supernovae occurring relative nearby to the solar system. The most common source is found in deep sea ferromanganese crusts. Such nodules are constantly growing and deposits iron, manganese and other elements. Samples are divided into layers which are dated for example with Beryllium-10. Some of these layers have higher concentrations of radioactive isotopes. [18] The isotope most commonly associated with supernovae on earth is Iron-60 from deep sea sediments, [19] Antarctic snow, [20] and lunar soil. [21] Other isotopes are Manganese-53 [22] and Plutonium-244 [18] from deep sea materials. Supernova-originated Aluminium-26, which was expected from cosmic ray studies, was not confirmed. [23] Iron-60 and Manganese-53 have a peak 1.7–3.2 Million years ago and Iron-60 has a second peak 6.5–8.7 Million years ago. The older peak likely originated when the solar system moved through the Orion-Eridanus superbubble and the younger peak was generated when the solar system entered the local bubble 4.5 Million years ago. [24] One of the supernovae creating the younger peak might have created the pulsar PSR B1706-16 and turned Zeta Ophiuchi into a runaway star. Both originated from UCL and were released by a supernova 1.78 ± 0.21 Million years ago. [25] Another explanation for the older peak is that it was produced by one supernova in the Tucana-Horologium association 7-9 Million years ago. [26]

See also

Related Research Articles

<span class="mw-page-title-main">Supernova</span> Astrophysical phenomenon

A supernova is a powerful and luminous explosion of a star. A supernova occurs during the last evolutionary stages of a massive star, or when a white dwarf is triggered into runaway nuclear fusion. The original object, called the progenitor, either collapses to a neutron star or black hole, or is completely destroyed to form a diffuse nebula. The peak optical luminosity of a supernova can be comparable to that of an entire galaxy before fading over several weeks or months.

<span class="mw-page-title-main">Accelerating expansion of the universe</span> Cosmological phenomenon

Observations show that the expansion of the universe is accelerating, such that the velocity at which a distant galaxy recedes from the observer is continuously increasing with time. The accelerated expansion of the universe was discovered in 1998 by two independent projects, the Supernova Cosmology Project and the High-Z Supernova Search Team, which used distant type Ia supernovae to measure the acceleration. The idea was that as type Ia supernovae have almost the same intrinsic brightness, and since objects that are further away appear dimmer, the observed brightness of these supernovae can be used to measure the distance to them. The distance can then be compared to the supernovae's cosmological redshift, which measures how much the universe has expanded since the supernova occurred; the Hubble law established that the further away an object is, the faster it is receding. The unexpected result was that objects in the universe are moving away from one another at an accelerating rate. Cosmologists at the time expected that recession velocity would always be decelerating, due to the gravitational attraction of the matter in the universe. Three members of these two groups have subsequently been awarded Nobel Prizes for their discovery. Confirmatory evidence has been found in baryon acoustic oscillations, and in analyses of the clustering of galaxies.

<span class="mw-page-title-main">Cosmological principle</span> Theory that the universe is the same in all directions

In modern physical cosmology, the cosmological principle is the notion that the spatial distribution of matter in the universe is uniformly isotropic and homogeneous when viewed on a large enough scale, since the forces are expected to act equally throughout the universe on a large scale, and should, therefore, produce no observable inequalities in the large-scale structuring over the course of evolution of the matter field that was initially laid down by the Big Bang.

<span class="mw-page-title-main">Blue supergiant</span> Hot, luminous star with a spectral type of A9 or earlier

A blue supergiant (BSG) is a hot, luminous star, often referred to as an OB supergiant. They are usually considered to be those with luminosity class I and spectral class B9 or earlier, although sometimes A-class supergiants are also deemed blue supergiants.

<span class="mw-page-title-main">Loop I Bubble</span>

The Loop I Bubble is a cavity in the interstellar medium (ISM) of the Orion Arm of the Milky Way. From our Sun's point of view, it is situated towards the Galactic Center of the Milky Way galaxy. Two conspicuous tunnels connect the Local Bubble with the Loop I Bubble cavity. The Loop I Bubble is a supershell.

<span class="mw-page-title-main">Lambda-CDM model</span> An anomaly in astronomical observations of the Cosmic Microwave Background

The Lambda-CDM, Lambda cold dark matter, or ΛCDM model is a mathematical model of the Big Bang theory with three major components:

  1. a cosmological constant, denoted by lambda (Λ), associated with dark energy
  2. the postulated cold dark matter, denoted by CDM
  3. ordinary matter
<span class="mw-page-title-main">Local Interstellar Cloud</span> Interstellar cloud in the Milky Way Galaxy

The Local Interstellar Cloud (LIC), also known as the Local Fluff, is an interstellar cloud roughly 30 light-years (9.2 pc) across, through which the Solar System is moving. This feature overlaps with a region around the Sun referred to as the solar neighborhood. It is unknown whether the Sun is embedded in the Local Interstellar Cloud, or is in the region where the Local Interstellar Cloud is interacting with the neighboring G-Cloud. Like the G-Cloud and others, the LIC is part of the Very Local Interstellar Medium which begins where the heliosphere and interplanetary medium end, the furthest that probes have traveled.

<span class="mw-page-title-main">Superbubble</span> Cavity hundreds of light years across created by strong stellar winds in a galaxy

In astronomy a superbubble or supershell is a cavity which is hundreds of light years across and is populated with hot (106 K) gas atoms, less dense than the surrounding interstellar medium, blown against that medium and carved out by multiple supernovae and stellar winds. The winds, passage and gravity of newly born stars strip superbubbles of any other dust or gas. The Solar System lies near the center of an old superbubble, known as the Local Bubble, whose boundaries can be traced by a sudden rise in dust extinction of exterior stars at distances greater than a few hundred light years.

<span class="mw-page-title-main">Near-Earth supernova</span> Supernova close enough to have effects on the Earths biosphere

A near-Earth supernova is an explosion resulting from the death of a star that occurs close enough to the Earth to have noticeable effects on Earth's biosphere.

Naturally occurring iron (26Fe) consists of four stable isotopes: 5.845% of 54Fe (possibly radioactive with a half-life over 4.4×1020 years), 91.754% of 56Fe, 2.119% of 57Fe and 0.286% of 58Fe. There are 28 known radioactive isotopes and 8 nuclear isomers, the most stable of which are 60Fe (half-life 2.6 million years) and 55Fe (half-life 2.7 years).

<span class="mw-page-title-main">Nuclear astrophysics</span> Field of nuclear physics and astrophysics

Nuclear astrophysics studies the origin of the chemical elements and isotopes, and the role of nuclear energy generation, in cosmic sources such as stars, supernovae, novae, and violent binary-star interactions. It is an interdisciplinary part of both nuclear physics and astrophysics, involving close collaboration among researchers in various subfields of each of these fields. This includes, notably, nuclear reactions and their rates as they occur in cosmic environments, and modeling of astrophysical objects where these nuclear reactions may occur, but also considerations of cosmic evolution of isotopic and elemental composition (often called chemical evolution). Constraints from observations involve multiple messengers, all across the electromagnetic spectrum (nuclear gamma-rays, X-rays, optical, and radio/sub-mm astronomy), as well as isotopic measurements of solar-system materials such as meteorites and their stardust inclusions, cosmic rays, material deposits on Earth and Moon). Nuclear physics experiments address stability (i.e., lifetimes and masses) for atomic nuclei well beyond the regime of stable nuclides into the realm of radioactive/unstable nuclei, almost to the limits of bound nuclei (the drip lines), and under high density (up to neutron star matter) and high temperature (plasma temperatures up to 109 K). Theories and simulations are essential parts herein, as cosmic nuclear reaction environments cannot be realized, but at best partially approximated by experiments.

<span class="mw-page-title-main">Scorpius–Centaurus association</span> The nearest OB association to Earth

The Scorpius–Centaurus association is the nearest OB association to the Sun. This stellar association is composed of three subgroups and its distance is about 130 parsecs or 420 light-years. Analysis using improved Hipparcos data has brought the number of known members to 436. The cluster shows a continuous spread of stars with no apparent need for subclassification.

<span class="mw-page-title-main">Gravitational-wave astronomy</span> Branch of astronomy using gravitational waves

Gravitational-wave astronomy is a subfield of astronomy concerned with the detection and study of gravitational waves emitted by astrophysical sources.

<span class="mw-page-title-main">Steady-state model</span> Model of the universe – alternative to the Big Bang model

In cosmology, the steady-state model or steady state theory is an alternative to the Big Bang theory. In the steady-state model, the density of matter in the expanding universe remains unchanged due to a continuous creation of matter, thus adhering to the perfect cosmological principle, a principle that says that the observable universe is always the same at any time and any place.

BD+43 3654 is a massive luminous blue supergiant runaway star in the constellation Cygnus.

<span class="mw-page-title-main">WR 102</span> Star in the constellation Sagittarius

WR 102 is a Wolf–Rayet star in the constellation Sagittarius, an extremely rare star on the WO oxygen sequence. It is a luminous and very hot star, highly evolved and close to exploding as a supernova.

The "axis of evil" is a name given to an unsubstantiated correlation between the plane of the Solar System and aspects of the cosmic microwave background (CMB). It gives the plane of the Solar System and hence the location of Earth a greater significance than might be expected by chance – a result which has been claimed to be evidence of a departure from the Copernican principle. Later analysis found no such evidence.

Supernova neutrinos are weakly interactive elementary particles produced during a core-collapse supernova explosion. A massive star collapses at the end of its life, emitting on the order of 1058 neutrinos and antineutrinos in all lepton flavors. The luminosity of different neutrino and antineutrino species are roughly the same. They carry away about 99% of the gravitational energy of the dying star as a burst lasting tens of seconds. The typical supernova neutrino energies are 10 to 20 MeV. Supernovae are considered the strongest and most frequent source of cosmic neutrinos in the MeV energy range.

<span class="mw-page-title-main">Henize 70</span> H II region in the Large Magellanic Cloud

Henize 70 (N70) is a faint emission nebula and superbubble located in the Large Magellanic Cloud in the constellation of Dorado.

References

  1. Egger, Roland J.; Aschenbach, Bernd (February 1995). "Interaction of the Loop I supershell with the Local Hot Bubble". Astronomy and Astrophysics . 294 (2): L25–L28. arXiv: astro-ph/9412086 . Bibcode:1995A&A...294L..25E.
  2. "NAME Local Bubble". SIMBAD . Centre de données astronomiques de Strasbourg . Retrieved 15 March 2014.
  3. Abt, Helmut A. (December 2015). "Hot gaseous stellar disks avoid regions of low interstellar densities". Publications of the Astronomical Society of the Pacific. 127 (958): 1218–1225. Bibcode:2015PASP..127.1218A. doi:10.1086/684436. S2CID   124774683.
  4. "Our local galactic neighborhood". Interstellar.jpl.nasa.gov. National Aeronautics and Space Administration (NASA). 8 February 2000. Archived from the original on 21 November 2013. Retrieved 23 July 2013.
  5. Berghoefer, T.W.; Breitschwerdt, D. (2002). "The origin of the young stellar population in the solar neighborhood – a link to the formation of the Local Bubble?". Astronomy and Astrophysics . 390 (1): 299–306. arXiv: astro-ph/0205128v2 . Bibcode:2002A&A...390..299B. doi:10.1051/0004-6361:20020627. S2CID   6002327.
  6. Gabel, J.R.; Bruhweiler, F.C. (8 January 1998). "[51.09] Model of an expanding supershell structure in the LISM". American Astronomical Society. Archived from the original on 15 March 2014. Retrieved 14 March 2014.
  7. Maíz-Apellániz, Jesús (1 October 2001). "The Origin of the Local Bubble". The Astrophysical Journal. 560 (1): L83–L86. arXiv: astro-ph/0108472 . Bibcode:2001ApJ...560L..83M. doi:10.1086/324016. ISSN   0004-637X.
  8. Fuchs, B.; Breitschwerdt, D.; de Avillez, M. A.; Dettbarn, C.; Flynn, C. (1 December 2006). "The search for the origin of the Local Bubble redivivus". Monthly Notices of the Royal Astronomical Society. 373 (3): 993–1003. arXiv: astro-ph/0609227 . Bibcode:2006MNRAS.373..993F. doi: 10.1111/j.1365-2966.2006.11044.x . hdl:10174/5608. ISSN   0035-8711.
  9. "Local Chimney and Superbubbles". Solstation.com.
  10. Lallement, R.; Welsh, B.Y.; Vergely, J.L.; Crifo, F.; Sfeir, D. (2003). "3D mapping of the dense interstellar gas around the Local Bubble". Astronomy and Astrophysics. 411 (3): 447–464. Bibcode:2003A&A...411..447L. doi: 10.1051/0004-6361:20031214 .
  11. Koll, D.; et al. (2019). "Interstellar 60Fe in Antarctica". Physical Review Letters. 123 (7): 072701. Bibcode:2019PhRvL.123g2701K. doi:10.1103/PhysRevLett.123.072701. hdl: 1885/298253 . PMID   31491090. S2CID   201868513.
  12. "Cosmic Hot Interstellar Plasma Spectrometer (CHIPS)". Chips.ssl.berkeley.edu. University of California – Berkeley. 12 January 2003. Archived from the original on 21 November 2013. Retrieved 23 July 2013.
  13. Farhang, Amin; van Loon, Jacco Th.; Khosroshahi, Habib G.; Javadi, Atefeh; Bailey, Mandy (8 July 2019). "3D map of the local bubble". Nature Astronomy (letter). 3: 922–927. arXiv: 1907.07429 . doi:10.1038/s41550-019-0814-z. S2CID   197402894.
  14. Pelgrims, Vincent; Ferrière, Katia; Boulanger, Francois; Lallement, Rosine; Montier, Ludovic (April 2020). "Modeling the magnetized Local Bubble from dust data". Astronomy & Astrophysics. 636: A17. arXiv: 1911.09691 . Bibcode:2020A&A...636A..17P. doi:10.1051/0004-6361/201937157.
  15. Zucker, Catherine; Goodman, Alyssa A.; Alves, João; Bialy, Shmuel; Foley, Michael; Speagle, Joshua S.; Großschedl, Josefa; Finkbeiner, Douglas P.; Burkert, Andreas; Khimey, Diana; Swiggum, Cameren (12 January 2022). "Star formation near the Sun is driven by expansion of the Local Bubble". Nature. 601 (7893): 334–337. arXiv: 2201.05124 . Bibcode:2022Natur.601..334Z. doi:10.1038/s41586-021-04286-5. ISSN   1476-4687. PMID   35022612. S2CID   245906333.
  16. "1,000-Light-Year Wide Bubble Surrounding Earth is Source of All Nearby, Young Stars | Center for Astrophysics". www.cfa.harvard.edu. Retrieved 17 January 2022.
  17. "Star Formation near the Sun is driven by expansion of the Local Bubble". The Local Bubble. Retrieved 7 February 2022.
  18. 1 2 Wallner, A.; Froehlich, M. B.; Hotchkis, M. A. C.; Kinoshita, N.; Paul, M.; Martschini, M.; Pavetich, S.; Tims, S. G.; Kivel, N.; Schumann, D.; Honda, M.; Matsuzaki, H.; Yamagata, T. (1 May 2021). "60Fe and 244Pu deposited on Earth constrain the r-process yields of recent nearby supernovae". Science. 372 (6543): 742–745. Bibcode:2021Sci...372..742W. doi:10.1126/science.aax3972. ISSN   0036-8075. PMID   33986180.
  19. Knie, K.; Korschinek, G.; Faestermann, T.; Wallner, C.; Scholten, J.; Hillebrandt, W. (1 July 1999). "Indication for Supernova Produced 60Fe Activity on Earth". Physical Review Letters. 83 (1): 18–21. Bibcode:1999PhRvL..83...18K. doi:10.1103/PhysRevLett.83.18. ISSN   0031-9007.
  20. Koll, Dominik; Korschinek, Gunther; Faestermann, Thomas; Gómez-Guzmán, J. M.; Kipfstuhl, Sepp; Merchel, Silke; Welch, Jan M. (1 August 2019). "Interstellar 60Fe in Antarctica". Physical Review Letters. 123 (7): 072701. Bibcode:2019PhRvL.123g2701K. doi:10.1103/PhysRevLett.123.072701. hdl: 1885/298253 . ISSN   0031-9007. PMID   31491090.
  21. Fimiani, L.; Cook, D. L.; Faestermann, T.; Gómez-Guzmán, J. M.; Hain, K.; Herzog, G.; Knie, K.; Korschinek, G.; Ludwig, P.; Park, J.; Reedy, R. C.; Rugel, G. (1 April 2016). "Interstellar Fe 60 on the Surface of the Moon". Physical Review Letters. 116 (15): 151104. Bibcode:2016PhRvL.116o1104F. doi:10.1103/PhysRevLett.116.151104. ISSN   0031-9007. PMID   27127953.
  22. Korschinek, G.; Faestermann, T.; Poutivtsev, M.; Arazi, A.; Knie, K.; Rugel, G.; Wallner, A. (1 July 2020). "Supernova-Produced 53Mn on Earth". Physical Review Letters. 125 (3): 031101. Bibcode:2020PhRvL.125c1101K. doi:10.1103/PhysRevLett.125.031101. ISSN   0031-9007. PMID   32745435.
  23. Feige, Jenny; Wallner, Anton; Altmeyer, Randolf; Fifield, L. Keith; Golser, Robin; Merchel, Silke; Rugel, Georg; Steier, Peter; Tims, Stephen G.; Winkler, Stephan R. (1 November 2018). "Limits on Supernova-Associated Fe 60 /Al 26 Nucleosynthesis Ratios from Accelerator Mass Spectrometry Measurements of Deep-Sea Sediments". Physical Review Letters. 121 (22): 221103. Bibcode:2018PhRvL.121v1103F. doi:10.1103/PhysRevLett.121.221103. hdl: 1885/201559 . ISSN   0031-9007. PMID   30547642.
  24. Schulreich, M. M.; Feige, J.; Breitschwerdt, D. (1 December 2023). "Numerical studies on the link between radioisotopic signatures on Earth and the formation of the Local Bubble. II. Advanced modelling of interstellar 26Al, 53Mn, 60Fe, and 244Pu influxes as traces of past supernova activity in the solar neighbourhood". Astronomy and Astrophysics. 680: A39. arXiv: 2309.13983 . Bibcode:2023A&A...680A..39S. doi:10.1051/0004-6361/202347532. ISSN   0004-6361.
  25. Neuhäuser, R.; Gießler, F.; Hambaryan, V. V. (1 October 2020). "A nearby recent supernova that ejected the runaway star ζ Oph, the pulsar PSR B1706-16, and 60Fe found on Earth". Monthly Notices of the Royal Astronomical Society. 498 (1): 899–917. arXiv: 1909.06850 . Bibcode:2020MNRAS.498..899N. doi: 10.1093/mnras/stz2629 . ISSN   0035-8711.
  26. Hyde, M.; Pecaut, M. J. (1 January 2018). "Supernova ejecta in ocean cores used as time constraints for nearby stellar groups". Astronomische Nachrichten. 339 (1): 78–86. arXiv: 1712.05466 . Bibcode:2018AN....339...78H. doi:10.1002/asna.201713375. ISSN   0004-6337.

Further reading