Kirkwood gap

Last updated
Histogram showing the four most prominent Kirkwood gaps and a possible division into inner, middle and outer main-belt asteroids:

.mw-parser-output .legend{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .legend-color{display:inline-block;min-width:1.25em;height:1.25em;line-height:1.25;margin:1px 0;text-align:center;border:1px solid black;background-color:transparent;color:black}.mw-parser-output .legend-text{}
inner main-belt (a < 2.5 AU)

intermediate main-belt (2.5 AU < a < 2.82 AU)

outer main-belt (a > 2.82 AU) Kirkwood Gaps.svg
Histogram showing the four most prominent Kirkwood gaps and a possible division into inner, middle and outer main-belt asteroids:
  inner main-belt (a < 2.5 AU)
  intermediate main-belt (2.5 AU < a < 2.82 AU)
  outer main-belt (a > 2.82 AU)
A plot of inner solar system asteroids and planets as of 2006 May 9, in a manner that exposes the Kirkwood gaps. Similar to the position plot, planets (with trajectories) are orange, Jupiter being the outer most in this view. Various asteroid classes are colour coded: 'generic' main-belt asteroids are white. Inside the main belt, there are the Atens (red), Apollos (green), and Amors (blue). Outside the main belt are the Hildas (blue) and the Trojans (green). All object position vectors have been normalized to the length of the object's semi-major axis. The Kirkwood gaps are visible in the main belt. Kirkwood-20060509.png
A plot of inner solar system asteroids and planets as of 2006 May 9, in a manner that exposes the Kirkwood gaps. Similar to the position plot, planets (with trajectories) are orange, Jupiter being the outer most in this view. Various asteroid classes are colour coded: 'generic' main-belt asteroids are white. Inside the main belt, there are the Atens (red), Apollos (green), and Amors (blue). Outside the main belt are the Hildas (blue) and the Trojans (green). All object position vectors have been normalized to the length of the object's semi-major axis. The Kirkwood gaps are visible in the main belt.

A Kirkwood gap is a gap or dip in the distribution of the semi-major axes (or equivalently of the orbital periods) of the orbits of main-belt asteroids. They correspond to the locations of orbital resonances with Jupiter.

Contents

For example, there are very few asteroids with semimajor axis near 2.50 AU, period 3.95 years, which would make three orbits for each orbit of Jupiter (hence, called the 3:1 orbital resonance). Other orbital resonances correspond to orbital periods whose lengths are simple fractions of Jupiter's. The weaker resonances lead only to a depletion of asteroids, while spikes in the histogram are often due to the presence of a prominent asteroid family (see List of asteroid families).

The gaps were first noticed in 1866 by Daniel Kirkwood, who also correctly explained their origin in the orbital resonances with Jupiter while a professor at Jefferson College in Canonsburg, Pennsylvania. [1]

Most of the Kirkwood gaps are depleted, unlike the mean-motion resonances (MMR) of Neptune or Jupiter's 3:2 resonance, that retain objects captured during the giant planet migration of the Nice model. The loss of objects from the Kirkwood gaps is due to the overlapping of the ν5 and ν6 secular resonances within the mean-motion resonances. The orbital elements of the asteroids vary chaotically as a result and evolve onto planet-crossing orbits within a few million years. [2] The 2:1 MMR has a few relatively stable islands within the resonance, however. These islands are depleted due to slow diffusion onto less stable orbits. This process, which has been linked to Jupiter and Saturn being near a 5:2 resonance, may have been more rapid when Jupiter's and Saturn's orbits were closer together. [3]

More recently, a relatively small number of asteroids have been found to possess high eccentricity orbits which do lie within the Kirkwood gaps. Examples include the Alinda and Griqua groups. These orbits slowly increase their eccentricity on a timescale of tens of millions of years, and will eventually break out of the resonance due to close encounters with a major planet. This is why asteroids are rarely found in the Kirkwood gaps.

Main gaps

The most prominent Kirkwood gaps are located at mean orbital radii of: [4]

Weaker and/or narrower gaps are also found at:

Asteroid zones

The gaps are not seen in a simple snapshot of the locations of the asteroids at any one time because asteroid orbits are elliptical, and many asteroids still cross through the radii corresponding to the gaps. The actual spatial density of asteroids in these gaps does not differ significantly from the neighboring regions. [5]

The main gaps occur at the 3:1, 5:2, 7:3, and 2:1 mean-motion resonances with Jupiter. An asteroid in the 3:1 Kirkwood gap would orbit the Sun three times for each Jovian orbit, for instance. Weaker resonances occur at other semi-major axis values, with fewer asteroids found than nearby. (For example, an 8:3 resonance for asteroids with a semi-major axis of 2.71 AU). [6]

The main or core population of the asteroid belt may be divided into the inner and outer zones, separated by the 3:1 Kirkwood gap at 2.5 AU, and the outer zone may be further divided into middle and outer zones by the 5:2 gap at 2.82 AU: [7]

4 Vesta is the largest asteroid in the inner zone, 1 Ceres and 2 Pallas in the middle zone, and 10 Hygiea in the outer zone. 87 Sylvia is probably the largest Main Belt asteroid beyond the outer zone.

See also

Related Research Articles

<span class="mw-page-title-main">Orbital resonance</span> Regular and periodic mutual gravitational influence of orbiting bodies

In celestial mechanics, orbital resonance occurs when orbiting bodies exert regular, periodic gravitational influence on each other, usually because their orbital periods are related by a ratio of small integers. Most commonly, this relationship is found between a pair of objects. The physical principle behind orbital resonance is similar in concept to pushing a child on a swing, whereby the orbit and the swing both have a natural frequency, and the body doing the "pushing" will act in periodic repetition to have a cumulative effect on the motion. Orbital resonances greatly enhance the mutual gravitational influence of the bodies. In most cases, this results in an unstable interaction, in which the bodies exchange momentum and shift orbits until the resonance no longer exists. Under some circumstances, a resonant system can be self-correcting and thus stable. Examples are the 1:2:4 resonance of Jupiter's moons Ganymede, Europa and Io, and the 2:3 resonance between Neptune and Pluto. Unstable resonances with Saturn's inner moons give rise to gaps in the rings of Saturn. The special case of 1:1 resonance between bodies with similar orbital radii causes large planetary system bodies to eject most other bodies sharing their orbits; this is part of the much more extensive process of clearing the neighbourhood, an effect that is used in the current definition of a planet.

<span class="mw-page-title-main">Jupiter trojan</span> Asteroid sharing the orbit of Jupiter

The Jupiter trojans, commonly called trojan asteroids or simply trojans, are a large group of asteroids that share the planet Jupiter's orbit around the Sun. Relative to Jupiter, each trojan librates around one of Jupiter's stable Lagrange points: either L4, existing 60° ahead of the planet in its orbit, or L5, 60° behind. Jupiter trojans are distributed in two elongated, curved regions around these Lagrangian points with an average semi-major axis of about 5.2 AU.

<span class="mw-page-title-main">Asteroid belt</span> Region between the orbits of Mars and Jupiter

The asteroid belt is a torus-shaped region in the Solar System, centered on the Sun and roughly spanning the space between the orbits of the planets Jupiter and Mars. It contains a great many solid, irregularly shaped bodies called asteroids or minor planets. The identified objects are of many sizes, but much smaller than planets, and, on average, are about one million kilometers apart. This asteroid belt is also called the main asteroid belt or main belt to distinguish it from other asteroid populations in the Solar System.

Commensurability is the property of two orbiting objects, such as planets, satellites, or asteroids, whose orbital periods are in a rational proportion.

The Hungaria asteroids, also known as the Hungaria group, are a dynamical group of asteroids in the asteroid belt which orbit the Sun with a semi-major axis between 1.78 and 2.00 astronomical units (AU). They are the innermost dense concentration of asteroids in the Solar System—the near-Earth asteroids are much more sparse—and derive their name from their largest member 434 Hungaria. The Hungaria group includes the Hungaria family, a collisional asteroid family which dominates its population.

A Hecuba-gap asteroid is a member of a dynamical group of resonant asteroids located in the Hecuba gap at 3.27 AU – one of the largest Kirkwood gaps in the asteroid belt, which is considered the borderline separating the outer main belt asteroids from the Cybeles. A Hecuba-gap asteroid stays in a 2:1 mean motion resonance with the gas giant Jupiter, which may gradually perturbe its orbits over a long period until it either intersect with the orbit of Mars or Jupiter itself. Depending on the dynamical stability of an asteroid's orbit in the Hecuba gap, three subgroups have been proposed. These are the marginally unstable Griqua asteroids, with an estimated lifetime of more than 100 million years, the stable Zhongguo asteroids, and an unnamed, strongly unstable population of asteroids with a dynamical lifetime of less than 70 million years.

11665 Dirichlet, provisional designation 1997 GL28, is a Griqua asteroid and a 2:1 Jupiter librator from the outermost regions of the asteroid belt, approximately 6.8 kilometers (4 miles) in diameter. It was discovered on 14 April 1997, by astronomer Paul Comba at the Prescott Observatory in Arizona, United States. The asteroid was named after German mathematician Peter Gustav Lejeune Dirichlet.

11573 Helmholtz, provisional designation 1993 SK3, is a Zhongguo asteroid from the outermost region of the asteroid belt, approximately 13 kilometers (8 miles) in diameter. It was discovered on 20 September 1993, by German astronomers Freimut Börngen and Lutz Schmadel at the Karl Schwarzschild Observatory in Tautenburg, Germany. It is one of few asteroids located in the 2:1 resonance with Jupiter. The asteroid was named for German physicist Hermann von Helmholtz.

4177 Kohman, provisional designation 1987 SS1, is a resonant Griqua asteroid from the outermost regions of the asteroid belt, approximately 11 kilometers (6.8 miles) in diameter. It was discovered on 21 September 1987, by American astronomer Edward Bowell at the Anderson Mesa Station of the Lowell Observatory near Flagstaff, Arizona, in the United States. The asteroid was named for American nuclear chemist Truman Kohman.

<span class="mw-page-title-main">7604 Kridsadaporn</span>

7604 Kridsadaporn, provisional designation 1995 QY2, is an unusual, carbonaceous asteroid and Mars-crosser on a highly eccentric orbit from the outer regions of the asteroid belt, approximately 12 kilometers (7.5 miles) in diameter. It was discovered on 31 August 1995, by Australian astronomer Robert McNaught at Siding Spring Observatory near Coonabarabran, Australia. Due to its particular orbit, the C-type asteroid belongs to MPC's list of "other" unusual objects, and has been classified as an "asteroid in cometary orbit", or ACO. The asteroid was named in memory of Thai astronomer Kridsadaporn Ritsmitchai.

22740 Rayleigh (provisional designation 1998 SX146) is a Zhongguo asteroid from the outermost region of the asteroid belt, approximately 10 kilometers (6 miles) in diameter. It was discovered on 20 September 1998, by Belgian astronomer Eric Elst at the La Silla Observatory in Chile. It is one of few asteroids located in the 2 : 1 resonance with Jupiter. The asteroid was named for English physicist and Nobel laureate Lord Rayleigh.

3789 Zhongguo, provisional designation 1928 UF, is a resonant asteroid from outermost region of the asteroid belt, approximately 14 kilometers in diameter. It was discovered in 1928 by Chinese astronomer Zhang Yuzhe at the Yerkes Observatory in Williams Bay, Wisconsin, in the United States. Originally named "China", the asteroid became lost and its name was transferred to another asteroid. After its re-discovery in 1986, it was named Zhongguo, which is the Chinese word for "China". The T/Xk-type asteroid is the namesake of the resonant Zhongguo group, located in the asteroid belt's Hecuba gap. It has a short rotation period of 3.8 hours.

1922 Zulu, provisional designation 1949 HC, is a carbonaceous asteroid in a strongly unstable resonance with Jupiter, located in the outermost regions of the asteroid belt, and approximately 20 kilometers in diameter. It was discovered on 25 April 1949, by South African astronomer Ernest Johnson at Union Observatory in Johannesburg, and named for the South African Zulu people.

<span class="mw-page-title-main">Nice model</span> Scenario for the dynamical evolution of the Solar System

The Nicemodel is a scenario for the dynamical evolution of the Solar System. It is named for the location of the Côte d'Azur Observatory—where it was initially developed in 2005—in Nice, France. It proposes the migration of the giant planets from an initial compact configuration into their present positions, long after the dissipation of the initial protoplanetary disk. In this way, it differs from earlier models of the Solar System's formation. This planetary migration is used in dynamical simulations of the Solar System to explain historical events including the Late Heavy Bombardment of the inner Solar System, the formation of the Oort cloud, and the existence of populations of small Solar System bodies such as the Kuiper belt, the Neptune and Jupiter trojans, and the numerous resonant trans-Neptunian objects dominated by Neptune.

The five-planet Nice model is a numerical model of the early Solar System that is a revised variation of the Nice model. It begins with five giant planets, the four that exist today plus an additional ice giant between Saturn and Uranus in a chain of mean-motion resonances.

The jumping-Jupiter scenario specifies an evolution of giant-planet migration described by the Nice model, in which an ice giant is scattered inward by Saturn and outward by Jupiter, causing their semi-major axes to jump, and thereby quickly separating their orbits. The jumping-Jupiter scenario was proposed by Ramon Brasser, Alessandro Morbidelli, Rodney Gomes, Kleomenis Tsiganis, and Harold Levison after their studies revealed that the smooth divergent migration of Jupiter and Saturn resulted in an inner Solar System significantly different from the current Solar System. During this migration secular resonances swept through the inner Solar System exciting the orbits of the terrestrial planets and the asteroids, leaving the planets' orbits too eccentric, and the asteroid belt with too many high-inclination objects. The jumps in the semi-major axes of Jupiter and Saturn described in the jumping-Jupiter scenario can allow these resonances to quickly cross the inner Solar System without altering orbits excessively, although the terrestrial planets remain sensitive to its passage.

The Nice 2 model is a model of the early evolution of the Solar System. The Nice 2 model resembles the original Nice model in that a late instability of the outer Solar System results in gravitational encounters between planets, the disruption of an outer planetesimal disk, and the migrations of the outer planets to new orbits. However, the Nice 2 model differs in its initial conditions and in the mechanism for triggering the late instability. These changes reflect the analysis of the orbital evolution of the outer Solar System during the gas disk phase and the inclusion of gravitational interactions between planetesimals in the outer disk into the model.

<span class="mw-page-title-main">Grand tack hypothesis</span> Theory of early changes in Jupiters orbit

In planetary astronomy, the grand tack hypothesis proposes that Jupiter formed at a distance of 3.5 AU from the Sun, then migrated inward to 1.5 AU, before reversing course due to capturing Saturn in an orbital resonance, eventually halting near its current orbit at 5.2 AU. The reversal of Jupiter's planetary migration is likened to the path of a sailboat changing directions (tacking) as it travels against the wind.

(16882) 1998 BO13 (provisional designation 1998 BO13) is a dark Zhongguo asteroid from the background population in the outermost region of the asteroid belt, approximately 10 kilometers (6 miles) in diameter. It was discovered on 24 January 1998, by astronomers with the Lincoln Near-Earth Asteroid Research at the Lincoln Laboratory's Experimental Test Site near Socorro, New Mexico, in the United States.

References

  1. Coleman, Helen Turnbull Waite (1956). Banners in the Wilderness: The Early Years of Washington and Jefferson College. University of Pittsburgh Press. p.  158. OCLC   2191890.
  2. Moons, Michèle; Morbidelli, Alessandro (1995). "Secular resonances inside mean-motion commensurabilities: the 4/1, 3/1, 5/2 and 7/3 cases". Icarus. 114 (1): 33–50. Bibcode:1995Icar..114...33M. doi:10.1006/icar.1995.1041.
  3. Moons, Michèle; Morbidelli, Alessandro; Migliorini, Fabio (1998). "Dynamical Structure of the 2/1 Commensurability with Jupiter and the Origin of the Resonant Asteroids". Icarus. 135 (2): 458–468. Bibcode:1998Icar..135..458M. doi:10.1006/icar.1998.5963.
  4. Minton, David A.; Malhotra, Renu (2009). "A record of planet migration in the main asteroid belt" (PDF). Nature. 457 (7233): 1109–1111. arXiv: 0906.4574 . Bibcode:2009Natur.457.1109M. doi:10.1038/nature07778. PMID   19242470. S2CID   2049956 . Retrieved 13 December 2016.
  5. McBride, N. & Hughes, D. W. (1990). "The spatial density of asteroids and its variation with asteroidal mass". Monthly Notices of the Royal Astronomical Society. 244: 513–520. Bibcode:1990MNRAS.244..513M.
  6. Ferraz-Mello, S. (June 14–18, 1993). "Kirkwood Gaps and Resonant Groups". proceedings of the 160th International Astronomical Union. Belgirate, Italy: Kluwer Academic Publishers. pp. 175–188. Bibcode:1994IAUS..160..175F.
  7. Klacka, Jozef (1992). "Mass distribution in the asteroid belt". Earth, Moon, and Planets. 56 (1): 47–52. Bibcode:1992EM&P...56...47K. doi:10.1007/BF00054599. S2CID   123074137.