F-type asteroid

Last updated

F-type asteroids are a relatively uncommon type of carbonaceous asteroid, falling into the wider C-group.


F-type asteroids have spectra generally similar to those of the B-type asteroids, but lack the "water" absorption feature around 3 μm indicative of hydrated minerals, and differ in the low wavelength part of the ultraviolet spectrum below 0.4 μm.

The F-type and B-type asteroids are not distinguishable with the criteria used in the SMASS classification, so in that scheme are grouped together under the B-type.

See also

Related Research Articles

A V-type asteroid or Vestoid is an asteroid whose spectral type is that of 4 Vesta. Approximately 6% of main-belt asteroids are vestoids, with Vesta being by far the largest of them. They are relatively bright, and rather similar to the more common S-type asteroid, which are also made up of stony irons and ordinary chondrites, with V-types containing more pyroxene than S-types.

S-type asteroid

S-type asteroids are asteroids with a spectral type that is indicative of a siliceous mineralogical composition, hence the name. Approximately 17% of asteroids are of this type, making it the second most common after the carbonaceous C-type.

C-type asteroid Asteroid spectral type; most common variety, forming around 75% of known asteroids

C-type (carbonaceous) asteroids are the most common variety, forming around 75% of known asteroids. They are distinguished by a very low albedo because their composition includes a large amount of carbon, in addition to rocks and minerals. They occur most frequently at the outer edge of the asteroid belt, 3.5 astronomical units (AU) from the Sun, where 80% of the asteroids are of this type, whereas only 40% of asteroids at 2 AU from the Sun are C-type. The proportion of C-types may actually be greater than this, because C-types are much darker than most other asteroid types except for D-types and others that are mostly at the extreme outer edge of the asteroid belt.

M-type asteroid

M-type asteroids are asteroids of partially known composition; they are moderately bright. Some, but not all, are made of nickel–iron, either pure or mixed with small amounts of stone. These are thought to be pieces of the metallic core of differentiated asteroids that were fragmented by impacts, and are thought to be the source of iron meteorites. M-type asteroids are the third most common asteroid type.

T-type asteroids are rare inner-belt asteroids of unknown composition with dark, featureless and moderately red spectra, and a moderate absorption feature shortwards of 0.85 μm. No direct meteorite analog has been found to date. Thought to be anhydrous, they are considered to be related to P-types or D-types, or possibly a highly altered C-type.

A-type asteroids are relatively uncommon inner-belt asteroids that have a strong, broad 1 μm olivine feature and a very reddish spectrum shortwards of 0.7 μm. They are thought to come from the completely differentiated mantle of an asteroid.

Q-type asteroids are relatively uncommon inner-belt asteroids with a strong, broad 1 micrometre olivine and pyroxene feature, and a spectral slope that indicates the presence of metal. There are absorption features shortwards and longwards of 0.7 μm, and the spectrum is generally intermediate between the V and S-type.

G-type asteroid asteroid spectral type; relatively uncommon type of carbonaceous asteroid

G-type asteroids are a relatively uncommon type of carbonaceous asteroid that makes up approximately 5% of asteroids. The most notable asteroid in this class is 1 Ceres.

B-type asteroid

B-type asteroids are a relatively uncommon type of carbonaceous asteroid, falling into the wider C-group; the 'B' indicates these objects are spectrally blue. In the asteroid population, B-class objects can be found in the outer asteroid belt, and also dominate the high-inclination Pallas family which includes the second-largest asteroid 2 Pallas. They are thought to be primitive, volatile-rich remnants from the early Solar System. There are 65 known B-type asteroids in the SMASS classification, and 9 in the Tholen classification as of March 2015.

21 Lutetia

Lutetia is a large asteroid in the asteroid belt of an unusual spectral type. It measures about 100 kilometers in diameter. It was discovered in 1852 by Hermann Goldschmidt, and is named after Lutetia, the Latin name of Paris.

92 Undina

Undina, minor planet designation 92 Undina, is a large main belt asteroid. The asteroid was discovered by Christian Peters on 7 July 1867 from the Hamilton College Observatory. It is named for the eponymous heroine of Undine, a popular novella by Friedrich de la Motte Fouqué.

Klymene is a large, dark Themistian asteroid that was discovered by J. C. Watson on September 13, 1868, and named after one of the many Clymenes in Greek mythology. It is classified as a C-type asteroid, indicating it probably has a carbonaceous composition. The spectra indicates the presence of aqueous-altered minerals on the surface based upon a sharp feature at a wavelength of 3 μm, and, as of 2015, is the only member of the Themis family found to show this absorption.

135 Hertha

Hertha is an asteroid from the inner region of the asteroid belt, approximately 77 kilometers in diameter. Discovered on 18 February 1874 by German–American astronomer Christian Peters at the Litchfield Observatory near Clinton, New York, it was named after the Teutonic and Scandinavian goddess of fertility, Hertha, also known as Nerthus. It orbits among the Nysa asteroid family, but its classification as an metallic M-type asteroid does not match the more common F-type asteroid for this family, suggesting that it may be an interloper. Spectroscopic analysis indicates the possible presence of hydrated silicates indicating that Hertha should possibly be reclassified from its present M-type to the proposed W-type.

K-type asteroids are relatively uncommon asteroids with a moderately reddish spectrum shortwards of 0.75 μm, and a slight bluish trend longwards of this. They have a low albedo. Their spectrum resembles that of CV and CO meteorites.

Roberta is a large main belt asteroid. It was discovered on 1 September 1892, by German astronomer Anton Staus at Heidelberg Observatory. Roberta was the 12th asteroid that was discovered using photography, and the only asteroid discovery made by Staus.

An asteroid spectral type is assigned to asteroids based on their emission spectrum, color, and sometimes albedo. These types are thought to correspond to an asteroid's surface composition. For small bodies that are not internally differentiated, the surface and internal compositions are presumably similar, while large bodies such as Ceres and Vesta are known to have internal structure. Over the years, there has been a number of surveys that resulted in a set of different taxonomic systems such as the Tholen, SMASS and Bus–DeMeo classification.

L-type asteroids are relatively uncommon asteroids with a strongly reddish spectrum shortwards of 0.75 μm, and a featureless flat spectrum longwards of this. In comparison with the K-type, they exhibit a more reddish spectrum at visible wavelengths and a flat spectrum in the infrared.

The X-group of asteroids collects together several types with similar spectra, but probably quite different compositions.

The rare O-type asteroids have spectra similar to the unusual asteroid 3628 Boznemcová, which is the best asteroid match to the spectra of L6 and LL6 ordinary chondrite meteorites. Their spectra have a deep absorption feature longward of 0.75 μm.

J-type asteroids are asteroids with spectra similar to that of diogenite meteorites and so, presumably, to the deeper layers of the crust of 4 Vesta.