P-type asteroid

Last updated

P-type asteroids are asteroids that have low albedo and a featureless reddish spectrum. It has been suggested that they have a composition of organic rich silicates, carbon and anhydrous silicates, possibly with water ice in their interior. P-type asteroids are found in the outer asteroid belt and beyond. There are in the neighborhood of 33 known P-type asteroids, depending on the classification, [1] including 46 Hestia, 65 Cybele, 76 Freia, 87 Sylvia, 153 Hilda, 476 Hedwig and, in some classifications, 107 Camilla. [2] [3]

Contents

Taxonomy

An early system of asteroid taxonomy was established in 1975 from the doctoral thesis work of David J. Tholen. This was based upon observations of a group of 110 asteroids. The U-type classification was used as a miscellaneous class for asteroids with unusual spectra that didn't fit into the C and S-type asteroid classifications. In 1976, some of these U-type asteroids with unusual moderate albedo levels were labeled as M-type. [4]

Around 1981, an offshoot of the M-type asteroid branch appeared for minor planets that have spectra that are indistinguishable from M-type, but that also have low albedo not consistent with the M type. These were initially labeled X-type asteroids, then type DM (dark M) or PM (pseudo-M), before acquiring their own unique classification as P-type asteroids (where the P indicates "pseudo-M"). [4]

Properties

The P-type asteroids are some of the darkest objects in the Solar System with very low albedos (pv<0.1) and appear to be organic-rich, similar to carbonaceous chondrites. Their colors are somewhat redder than S-type asteroids and they do not show spectral features. The red coloration may be caused by organic compounds related to kerogen. [5] [6] The reflectance spectra of P-type asteroids can be reproduced through a combination of 31% CI and 49% CM groups of carbonaceous chondrite meteorites, plus 20% Tagish lake meteorites, after undergoing thermal metamorphism and space weathering. [2]

The density of the only two well-characterized P-type asteroids, 87 Sylvia and 107 Camilla P-type asteroids appears to be low, at 1.3 g/cm3 lower even than C-type asteroids. It is not clear what this tells us about their compositions. Both Sylvia and Camilla have moons and indications that they have been be disrupted, but they are also quite massive, at over ×1019 kg, and so are unlikely to have much internal porosity affecting their densities. [7]

The outer part of the main asteroid belt beyond 2.6 AU from the Sun is dominated by low-albedo C, D and P-type asteroids. These are primitive asteroids that may have had their materials chemically altered by liquid water. There are 33 known P-type asteroids. In addition to this, P-type asteroids are thought to be found in the outer asteroid belt and beyond. [8] The distribution of P-type asteroids peaks at an orbital distance of 4 AU. [9]

Related Research Articles

243 Ida Main-belt asteroid

Ida, minor planet designation 243 Ida, is an asteroid in the Koronis family of the asteroid belt. It was discovered on 29 September 1884 by Austrian astronomer Johann Palisa at Vienna Observatory and named after a nymph from Greek mythology. Later telescopic observations categorized Ida as an S-type asteroid, the most numerous type in the inner asteroid belt. On 28 August 1993, Ida was visited by the uncrewed Galileo spacecraft while en route to Jupiter. It was the second asteroid visited by a spacecraft and the first found to have a natural satellite.

S-type asteroid Asteroid spectral type indicating stony composition

S-type asteroids are asteroids with a spectral type that is indicative of a siliceous mineralogical composition, hence the name. They have relatively high density. Approximately 17% of asteroids are of this type, making it the second most common after the carbonaceous C-type.

C-type asteroid Asteroid spectral type; most common variety, forming around 75% of known asteroids

C-type (carbonaceous) asteroids are the most common variety, forming around 75% of known asteroids. They are volatile-rich and distinguished by a very low albedo because their composition includes a large amount of carbon, in addition to rocks and minerals. Their density averages at about 1.7 g/cm3. They occur most frequently at the outer edge of the asteroid belt, 3.5 astronomical units (AU) from the Sun, where 80% of the asteroids are of this type, whereas only 40% of asteroids at 2 AU from the Sun are C-type. The proportion of C-types may actually be greater than this, because C-types are much darker than most other asteroid types except for D-types and others that are mostly at the extreme outer edge of the asteroid belt.

Chondrite Class of stony meteorites

A chondrite is a stony (non-metallic) meteorite that has not been modified, by either melting or differentiation of the parent body. They are formed when various types of dust and small grains in the early Solar System accreted to form primitive asteroids. Some such bodies that are captured in the planet’s gravity well become the most common type of meteorite by arriving on a trajectory toward the Earth’s surface. Estimates for their contribution to the total meteorite population vary between 85.7% and 86.2%.

D-type asteroids have a very low albedo and a featureless reddish spectrum. It has been suggested that they have a composition of organic-rich silicates, carbon and anhydrous silicates, possibly with water ice in their interiors. D-type asteroids are found in the outer asteroid belt and beyond; examples are 152 Atala, and 944 Hidalgo as well as the majority of Jupiter trojans. It has been suggested that the Tagish Lake meteorite was a fragment from a D-type asteroid, and that the Martian moon Phobos is closely related.

B-type asteroid Asteroid spectral class; uncommon type of carbonaceous asteroid

B-type asteroids are a relatively uncommon type of carbonaceous asteroid, falling into the wider C-group; the 'B' indicates these objects are spectrally blue. In the asteroid population, B-class objects can be found in the outer asteroid belt, and also dominate the high-inclination Pallas family which includes the second-largest asteroid 2 Pallas. They are thought to be primitive, volatile-rich remnants from the early Solar System. There are 65 known B-type asteroids in the SMASS classification, and 9 in the Tholen classification as of March 2015.

51 Nemausa

Nemausa is a large asteroid-belt asteroid that was discovered on January 22, 1858, by Joseph Jean Pierre Laurent. Laurent made the discovery from the private observatory of Benjamin Valz in Nîmes, France. The house, at 32 rue Nationale in Nîmes, has a plaque commemorating the discovery. With Laurent's permission, Valz named the asteroid after the Celtic god Nemausus, the patron god and namesake of Nîmes during Roman times.

146 Lucina

Lucina is a main-belt asteroid that was discovered by Alphonse Borrelly on June 8, 1875, and named after Lucina, the Roman goddess of childbirth. It is large, dark and has a carbonaceous composition. The spectra of the asteroid displays evidence of aqueous alteration.

304 Olga

Olga is a large Main belt asteroid. It is classified as a C-type asteroid and is probably composed of carbonaceous material.

Carbonaceous chondrite

Carbonaceous chondrites or C chondrites are a class of chondritic meteorites comprising at least 8 known groups and many ungrouped meteorites. They include some of the most primitive known meteorites. The C chondrites represent only a small proportion (4.6%) of meteorite falls.

An asteroid spectral type is assigned to asteroids based on their emission spectrum, color, and sometimes albedo. These types are thought to correspond to an asteroid's surface composition. For small bodies that are not internally differentiated, the surface and internal compositions are presumably similar, while large bodies such as Ceres and Vesta are known to have internal structure. Over the years, there has been a number of surveys that resulted in a set of different taxonomic systems such as the Tholen, SMASS and Bus–DeMeo classification.

The X-group of asteroids collects together several types with similar spectra, but probably quite different compositions.

Kreusa is a C-type asteroid orbiting the Sun in the asteroid belt, with the type indicating a surface with a low albedo and high carbonaceous content. The spectra of the asteroid displays evidence of aqueous alteration.

773 Irmintraud, provisional designation 1913 TV, is a dark and reddish, rare-type asteroid from the outer region of the asteroid belt, about 92 kilometers in diameter. It was discovered on 22 December 1913, by German astronomer Franz Kaiser at Heidelberg Observatory in southern Germany.

Ordinary chondrite Class of stony meteorites

The ordinary chondrites are a class of stony chondritic meteorites. They are by far the most numerous group and comprise about 87% of all finds. Hence, they have been dubbed "ordinary". The ordinary chondrites are thought to have originated from three parent asteroids, with the fragments making up the H chondrite, L chondrite and LL chondrite groups respectively.

Tagish Lake (meteorite) Stony meteorite

The Tagish Lake meteorite fell at 16:43 UTC on 18 January 2000 in the Tagish Lake area in northwestern British Columbia, Canada.

CI chondrite Group of rare meteorites

CI chondrites, sometimes C1 chondrites, are a group of rare stony meteorites belonging to the carbonaceous chondrites. Samples have been discovered in France, Canada, India, and Tanzania. Compared to all the meteorites found so far, their overall chemical composition most closely resembles the elemental distribution in the sun's photosphere. Currently, borderline CI specimens found in Antarctica may or may not receive their own group, CY chondrites.

This is a glossary of terms used in meteoritics, the science of meteorites.

Asteroidal water is water or water precursor deposits such as hydroxide (OH) that exist in asteroids. The "snow line" of the Solar System lies outside of the main asteroid belt, and the majority of water is expected in minor planets (e.g., Kuiper belt objects and Centaurs. Nevertheless, a significant amount of water is also found inside the snow line, including in near-earth objects.

CM chondrites are a group of chondritic meteorites which resemble their type specimen, the Mighei meteorite. The CM is the most commonly recovered group of the 'carbonaceous chondrite' class of meteorites, though all are rarer in collections than ordinary chondrites.

References

  1. "JPL Small-Body Database Search Engine: spec. type = P (Tholen)". JPL Solar System Dynamics. Retrieved 2015-06-17.
  2. 1 2 Hiroi, T.; et al. (March 15–19, 2004). "What are the P-type Asteroids Made Of?". Proceedings, 35th Lunar and Planetary Science Conference. League City, Texas. Bibcode:2004LPI....35.1616H.
  3. Ziffer, J.; Campins, H.; Licandro, J.; Fernandez, Y. R.; Bus, S. (August 2005). "Near-infrared Spectra of Two Asteroids with Low Tisserand Invariant". Bulletin of the American Astronomical Society. 37: 644. Bibcode:2005DPS....37.1529Z.
  4. 1 2 Tholen, D. J.; Bell, J. F. (March 1987). "Evolution of Asteroid Taxonomy". Proceedings, 18th Lunar and Planetary Science Conference. Houston, Texas. pp. 1008–1009. Bibcode:1987LPI....18.1008T.
  5. De Pater, Imke; Lissauer, Jack Jonathan (2001). Planetary Sciences . Cambridge University Press. p.  353. ISBN   0-521-48219-4.
  6. Ehrenfreund, Pascale (2004). Ehrenfreund, P.; Irvine, W.M.; Owen, T.; et al. (eds.). Astrobiology: Future Perspectives. Springer Science & Business. p. 159. ISBN   1-4020-2304-9.
  7. P. Vernazza et al. (2021) VLT/SPHERE imaging survey of the largest main-belt asteroids: Final results and synthesis. Astronomy & Astrophysics 54, A56
  8. Lazzarin, M.; Barbieri, C.; Barucci, M. A. (December 1995). "Visible Spectroscopy of Dark, Primitive Asteroids". Astronomical Journal. 110: 3058. Bibcode:1995AJ....110.3058L. doi:10.1086/117747.
  9. McSween, Harry Y. (1999). Meteorites and their parent planets (2nd ed.). Cambridge University Press. p. 101. ISBN   0-521-58751-4.

See also