Binary asteroid

Last updated
Binary asteroid 243 Ida with its small minor-planet moon, Dactyl, as seen by Galileo 243 ida crop.jpg
Binary asteroid 243 Ida with its small minor-planet moon, Dactyl, as seen by Galileo
Binary near-Earth asteroid 65803 Didymos and its moon Dimorphos imaged by the Double Asteroid Redirection Test spacecraft Didymos-Dimorphos true orientation.png
Binary near-Earth asteroid 65803 Didymos and its moon Dimorphos imaged by the Double Asteroid Redirection Test spacecraft

A binary asteroid is a system of two asteroids orbiting their common barycenter. The binary nature of 243 Ida was discovered when the Galileo spacecraft flew by the asteroid in 1993. Since then numerous binary asteroids and several triple asteroids have been detected. [1]

Contents

The mass ratio of the two components – called the "primary" and "secondary" of a binary system – is an important characteristic. Most binary asteroids have a large mass ratio, i.e. a relatively small satellite in orbit around the main component. Systems with a small minor-planet moon – also called "companion" or simply "satellite" – include 87 Sylvia, 107 Camilla, 45 Eugenia, 121 Hermione, 130 Elektra, 22 Kalliope, 283 Emma, 379 Huenna, 243 Ida and 4337 Arecibo (in order of decreasing primary size). Some binary systems have a mass ratio near unity, i.e., two components of similar mass. They include 90 Antiope, 2006 VW139 , 2017 YE5 and 69230 Hermes, with average component diameters of 86, 1.8, 0.9 and 0.8 km, respectively.

Description

Several theories have been posited to explain the formation of binary-asteroid systems. Many systems have significant macro-porosity (a "rubble-pile" interior). The satellites orbiting large main-belt asteroids such as 22 Kalliope, 45 Eugenia or 87 Sylvia may have formed by disruption of a parent body after impact or fission after an oblique impact. Trans-Neptunian binaries may have formed during the formation of the Solar System by mutual capture or three-body interaction. Near-Earth asteroids, which orbit in the inner part of the Solar System, most likely form by spin-up and mass shedding, [2] likely as a result of the YORP effect. Numerical simulations suggest that when solar energy spins a “rubble pile” asteroid to a sufficiently fast rate by the YORP effect, material is thrown from the asteroid's equator. [3] This process also exposes fresh material at the poles of the asteroid. [3] [4]

See also

Related Research Articles

<span class="mw-page-title-main">Double planet</span> A binary system where two planetary-mass objects share an orbital axis external to both

In astronomy, a double planet is a binary satellite system where both objects are planets, or planetary-mass objects, that share an orbital axis external to both planetary bodies.

<span class="mw-page-title-main">Natural satellite</span> Astronomical body that orbits a planet

A natural satellite is, in the most common usage, an astronomical body that orbits a planet, dwarf planet, or small Solar System body. Natural satellites are often colloquially referred to as moons, a derivation from the Moon of Earth.

<span class="mw-page-title-main">Minor-planet moon</span> Natural satellite of a minor planet

A minor-planet moon is an astronomical object that orbits a minor planet as its natural satellite. As of January 2022, there are 457 minor planets known or suspected to have moons. Discoveries of minor-planet moons are important because the determination of their orbits provides estimates on the mass and density of the primary, allowing insights into their physical properties that are generally not otherwise accessible.

A binary system is a system of two astronomical bodies which are close enough that their gravitational attraction causes them to orbit each other around a barycenter (also see animated examples). More restrictive definitions require that this common center of mass is not located within the interior of either object, in order to exclude the typical planet–satellite systems and planetary systems.

<span class="mw-page-title-main">90 Antiope</span>

Antiope is a double asteroid in the outer asteroid belt. It was discovered on October 1, 1866, by Robert Luther. In 2000, it was found to consist of two almost-equally-sized bodies orbiting each other. At average diameters of about 88 km and 84 km, both components are among the 500 largest asteroids. Antiope is a member of the Themis family of asteroids that share similar orbital elements.

<span class="mw-page-title-main">45 Eugenia</span> Asteroid with 2 moons

Eugenia is a large asteroid of the asteroid belt. It is famed as one of the first asteroids to be found to have a moon orbiting it. It was also the second triple asteroid to be discovered, after 87 Sylvia.

<span class="mw-page-title-main">762 Pulcova</span>

762 Pulcova is a main-belt asteroid. It was discovered by Grigoriy N. Neujmin in 1913, and is named after Pulkovo Observatory, near Saint Petersburg. Pulcova is 137 km in diameter, and is a C-type asteroid, which means that it is dark in colouring with a carbonate composition.

<span class="mw-page-title-main">20 Massalia</span> Main-belt Massalian asteroid

Massalia, minor planet designation 20 Massalia, is a stony asteroid and the parent body of the Massalia family located in the inner region of the asteroid belt, approximately 145 kilometers in diameter. Discovered by Italian astronomer Annibale de Gasparis on 19 September 1852, it was named for the French city of Marseille, from which the independent discover Jean Chacornac sighted it the following night.

<span class="mw-page-title-main">22 Kalliope</span> Main-belt asteroid

Kalliope is a large M-type asteroid from the asteroid belt discovered by J. R. Hind on 16 November 1852. It is named after Calliope, the Greek Muse of epic poetry. It is orbited by a small moon named Linus.

<span class="mw-page-title-main">Yarkovsky–O'Keefe–Radzievskii–Paddack effect</span> Second-order variation on the Yarkovsky effect that changes the rotation rate of a small body

The Yarkovsky–O'Keefe–Radzievskii–Paddack effect, or YORP effect for short, changes the rotation state of a small astronomical body – that is, the body's spin rate and the obliquity of its pole(s) – due to the scattering of solar radiation off its surface and the emission of its own thermal radiation.

Jean-Luc Margot is a Belgian-born astronomer and a UCLA professor with expertise in planetary sciences and SETI.

<span class="mw-page-title-main">47171 Lempo</span> System comprising three trans-Neptunian objects

47171 Lempo, or as a binary (47171) Lempo–Hiisi (also known as 1999 TC36), is a trans-Neptunian object and trinary system from the Kuiper belt, located in the outermost regions of the Solar System. It was discovered on 1 October 1999, by American astronomers Eric Rubenstein and Louis-Gregory Strolger during an observing run at Kitt Peak National Observatory in Arizona, United States. Rubenstein was searching images taken by Strolger as part of their Nearby Galaxies Supernova Search project. It is classified as a plutino with a 2:3 mean-motion resonance with Neptune and is among the brighter TNOs. It reached perihelion in July 2015. This minor planet was named after Lempo from Finnish mythology.

<span class="mw-page-title-main">3749 Balam</span>

3749 Balam is a stony Flora asteroid and rare trinary system orbiting in the inner regions of asteroid belt. It also forms a secured asteroid pair with sub-kilometer sized asteroid (312497) 2009 BR60. Balam was discovered on 24 January 1982, by American astronomer Edward Bowell at Lowell's Anderson Mesa Station near Flagstaff, Arizona, and received the prov. designation 1982 BG1. It was named after Canadian astronomer David Balam. Balam measures approximately 4.1 kilometers (2.5 miles) in diameter. Its two minor-planet moons have an estimated diameter of 1.66 and 1.84 kilometers, respectively.

<span class="mw-page-title-main">Linus (moon)</span>

(22) Kalliope I Linus is an asteroid moon that orbits the large M-type asteroid 22 Kalliope. It was discovered on August 29, 2001, by astronomers Jean-Luc Margot and Michael E. Brown with the Keck telescope, in Hawaii. Another team also detected the moon with the Canada-France-Hawaii Telescope on September 2, 2001. Both telescopes are on Mauna Kea. It received the provisional designation S/2001 (22) 1, until it was named. The naming proposal appeared in the discovery paper and was approved by the International Astronomical Union in July 2003. Although the naming proposal referred to the mythological Linus, son of the muse Calliope and the inventor of melody and rhythm, the name was also meant to honor Linus Torvalds, inventor of the Linux operating system kernel, and Linus van Pelt, a character in the Peanuts comic strip.

<span class="nowrap">(185851) 2000 DP<sub>107</sub></span>

(185851) 2000 DP107 is a sub-kilometer sized asteroid, classified as potentially hazardous asteroid and near-Earth object of the Apollo group that is notable because it provided evidence for binary asteroids in the near-Earth population.

<span class="nowrap">(153591) 2001 SN<sub>263</sub></span>

(153591) 2001 SN263 is a carbonaceous trinary asteroid, classified as near-Earth object and former potentially hazardous asteroid of the Amor group, approximately 2.6 kilometers (1.6 miles) in diameter. It was discovered by the Lincoln Near-Earth Asteroid Research project at Lincoln Lab's Experimental Test Site in Socorro, New Mexico, on 20 September 2001. The two synchronous minor-planet moons measure approximately 770 and 430 meters and have an orbital period of 16.46 and 150 hours, respectively.

<span class="mw-page-title-main">Retrograde and prograde motion</span> Relative directions of orbit or rotation

Retrograde motion in astronomy is, in general, orbital or rotational motion of an object in the direction opposite the rotation of its primary, that is, the central object. It may also describe other motions such as precession or nutation of an object's rotational axis. Prograde or direct motion is more normal motion in the same direction as the primary rotates. However, "retrograde" and "prograde" can also refer to an object other than the primary if so described. The direction of rotation is determined by an inertial frame of reference, such as distant fixed stars.

<span class="mw-page-title-main">(35107) 1991 VH</span>

(35107) 1991 VH is a binary near-Earth asteroid and potentially hazardous asteroid of the Apollo group. It was discovered on 9 November 1991, by Australian astronomer Robert McNaught at Siding Spring Observatory. This binary system is composed of a roughly-spheroidal primary body about one kilometre in diameter, and an elongated natural satellite less than half a kilometre in diameter. The 1991 VH system is unusual for its dynamically excited state; the satellite has a tumbling, non-synchronous rotation that chaotically exchanges energy and angular momentum with its precessing, eccentric orbit. This asteroid system was one of the two targets of NASA's upcoming Janus Mayhem mission, until the delay of the rocket launch made both targets inaccessible.

<span class="mw-page-title-main">Satellite system (astronomy)</span> Set of gravitationally bound objects in orbit

A satellite system is a set of gravitationally bound objects in orbit around a planetary mass object or minor planet, or its barycenter. Generally speaking, it is a set of natural satellites (moons), although such systems may also consist of bodies such as circumplanetary disks, ring systems, moonlets, minor-planet moons and artificial satellites any of which may themselves have satellite systems of their own. Some bodies also possess quasi-satellites that have orbits gravitationally influenced by their primary, but are generally not considered to be part of a satellite system. Satellite systems can have complex interactions including magnetic, tidal, atmospheric and orbital interactions such as orbital resonances and libration. Individually major satellite objects are designated in Roman numerals. Satellite systems are referred to either by the possessive adjectives of their primary, or less commonly by the name of their primary. Where only one satellite is known, or it is a binary with a common centre of gravity, it may be referred to using the hyphenated names of the primary and major satellite.

<span class="nowrap">(300163) 2006 VW<sub>139</sub></span> Asteroid in the asteroid belt

(300163) 2006 VW139, provisional designations 2006 VW139 and P/2006 VW139, as well as periodic cometary number 288P, is a kilometer-sized asteroid from the outer regions of the asteroid belt and the first "binary main-belt comet" ever discovered.

References

  1. Margot, Jean-Luc; Pravec, Petr; Taylor, Patrick; Carry, Benoît; Jacobson, Seth (2015). "Asteroid Systems: Binaries, Triples, and Pairs". In Michel, Patrick; DeMeo, Francesca E.; Bottke, William F. (eds.). Asteroids IV. p. 355. arXiv: 1504.00034 . Bibcode:2015aste.book..355M. doi:10.2458/azu_uapress_9780816532131-ch019. ISBN   9780816532131. S2CID   56278100.
  2. Margot, Jean-Luc; et al. (2002). "Binary Asteroids in the Near-Earth Object Population". Science. 296 (5572): 1445–1448. Bibcode:2002Sci...296.1445M. doi:10.1126/science.1072094. PMID   11951001. S2CID   8768432.
  3. 1 2 Walsh, Kevin J.; Richardson, DC; Michel, P (June 2008). "Rotational breakup as the origin of small binary asteroids". Nature. 454 (7201): 188–191. Bibcode:2008Natur.454..188W. doi:10.1038/nature07078. PMID   18615078. S2CID   4418744.
  4. Study Puts Solar Spin on Asteroids, their Moons & Earth Impacts Newswise, Retrieved 14 July 2008.
  5. "Hubble discovers a unique type of object in the Solar System". www.spacetelescope.org. Retrieved 21 September 2017.