Synestia

Last updated
Artistic impression Synestia artistic recreation-bpk.jpg
Artistic impression

A synestia is a hypothesized rapidly spinning doughnut-shaped mass of vaporized rock. The term was coined in 2017 by Sarah T. Stewart-Mukhopadhyay, taken from Hestia, goddess of the hearth, combined with syn- meaning together. [1] In computer simulations of giant impacts of rotating objects, a synestia can form if the total angular momentum is greater than the co-rotational limit. [2] Beyond the co-rotational limit, the velocity at the equator of a body would exceed the orbital velocity. [3]

Contents

In the case of a synestia, the result is an inner region rotating at a single rate with a loosely connected torus orbiting beyond it. [4] Synestias also have differences in the mantles, both thermally and in their composition, from previous terrestrial evolution models due partially to a lower interior pressure. [5]

Composition

A synestia is composed of three primary components: the innermost area called the corotating region, a middle area called the transition region, and the area farthest out, known as the disk-like region. The corotating region rotates as a solid body. It is characterized by hot vapor and high entropy levels, as well as higher angular velocities. [4]

The transition region is generally a continuous change between the corotating region and ring-like region. Here, in most simulations, the angular velocity and temperature follow a smooth gradient, both decreasing with radius. The temperature gradient is created by the mixture of hot vapor from the inner regions with colder condensed material from farther out. Given time this equilibrates into solely a vapor. This transitions into the disk-like region whose appearance can vary dramatically with different initial conditions for angular momentum, mass, and entropy. [4]

Giant-impact hypothesis

According to studies, synestia was an early-stage process for the formation of the Earth and Moon within the giant-impact hypothesis. In that model, a synestia formed following a collision with an object of high energy and high angular momentum. The synestia's surface temperatures are constrained by the boiling point of rock, around 2,300  K  (approximately 2,000 °C; 3,700 °F). [6]

As the resulting synestia cooled by radiating heat to space, magma droplets formed in its outer layers and then rained inward over a period of tens of years, causing the synestia to contract. [6] Mass remaining outside the Roche limit of the inner region accreted to form moonlets, and subsequently combined to form the Moon. The Earth re-formed later, once the synestia had cooled sufficiently to fall within the co-rotational limit. By this model, the Moon's having formed within a cloud of vapor that originated from the Earth is why its isotopic ratios are similar to those of the Earth. The later formation of the Earth (after the synestia cooled) accounts for its having accreted more volatile elements than the Moon. [7]

Notes and references

  1. "Where did the Moon come from? A new theory | Sarah T. Stewart". YouTube .
  2. Boyle, Rebecca (23 June 2017) [25 May 2017]. "Huge impact could have smashed early Earth into a doughnut shape". New Scientist . Retrieved 7 June 2017.
  3. Gough, Evan (24 May 2017). "Scientists propose a new kind of planet: A smashed-up torus of hot, vaporized rock". Universe Today. Retrieved 7 June 2017.
  4. 1 2 3 Lock, Simon J.; Stewart, Sarah T. (2017). "The structure of terrestrial bodies: Impact heating, corotation limits and synestias". Journal of Geophysical Research: Planets. 122 (5): 950–982. arXiv: 1705.07858 . Bibcode:2017JGRE..122..950L. doi:10.1002/2016JE005239. S2CID   118959814.
  5. Lock, Simon J. (2018). The Formation, Structure and Evolution of Terrestrial Planets. Graduate School of Arts & Sciences (Ph.D. thesis). Harvard University.
  6. 1 2 Lock, Simon J. "When Earth and the Moon were one". Scientific American . Retrieved 3 July 2019.
  7. Lock, Simon J.; Stewart, Sarah T.; Petaev, Michail I.; Leinhardt, Zoe M.; Mace, Mia T.; Jacobsen, Stein B.; Ćuk, Matija (2018). "The origin of the Moon within a terrestrial synestia". Journal of Geophysical Research . 123 (4): 910. arXiv: 1802.10223 . Bibcode:2018JGRE..123..910L. doi:10.1002/2017JE005333. S2CID   119184520.

Related Research Articles

<span class="mw-page-title-main">Tidal acceleration</span> Natural phenomenon due to which tidal locking occurs

Tidal acceleration is an effect of the tidal forces between an orbiting natural satellite and the primary planet that it orbits. The acceleration causes a gradual recession of a satellite in a prograde orbit, and a corresponding slowdown of the primary's rotation. The process eventually leads to tidal locking, usually of the smaller body first, and later the larger body. The Earth–Moon system is the best-studied case.

<span class="mw-page-title-main">Rotation</span> Movement of an object around an axis

Rotation or rotational motion is the circular movement of an object around a central line, known as axis of rotation. A plane figure can rotate in either a clockwise or counterclockwise sense around a perpendicular axis intersecting anywhere inside or outside the figure at a center of rotation. A solid figure has an infinite number of possible axes and angles of rotation, including chaotic rotation, in contrast to rotation around a fixed axis.

<span class="mw-page-title-main">Giant-impact hypothesis</span> Theory of the formation of the Moon

The giant-impact hypothesis, sometimes called the Big Splash, or the Theia Impact, is an astrogeology hypothesis for the formation of the Moon first proposed in 1946 by Canadian geologist Reginald Daly. The hypothesis suggests that the Early Earth collided with a Mars-sized dwarf planet of the same orbit approximately 4.5 billion years ago in the early Hadean eon, and the ejectae of the impact event later accreted to form the Moon. The impactor planet is sometimes called Theia, named after the mythical Greek Titan who was the mother of Selene, the goddess of the Moon.

<span class="mw-page-title-main">Tidal locking</span> Situation in which an astronomical objects orbital period matches its rotational period

Tidal locking between a pair of co-orbiting astronomical bodies occurs when one of the objects reaches a state where there is no longer any net change in its rotation rate over the course of a complete orbit. In the case where a tidally locked body possesses synchronous rotation, the object takes just as long to rotate around its own axis as it does to revolve around its partner. For example, the same side of the Moon always faces the Earth, although there is some variability because the Moon's orbit is not perfectly circular. Usually, only the satellite is tidally locked to the larger body. However, if both the difference in mass between the two bodies and the distance between them are relatively small, each may be tidally locked to the other; this is the case for Pluto and Charon, as well as for Eris and Dysnomia. Alternative names for the tidal locking process are gravitational locking, captured rotation, and spin–orbit locking.

Rotational energy or angular kinetic energy is kinetic energy due to the rotation of an object and is part of its total kinetic energy. Looking at rotational energy separately around an object's axis of rotation, the following dependence on the object's moment of inertia is observed:

A momentum exchange tether is a kind of space tether that could theoretically be used as a launch system, or to change spacecraft orbits. Momentum exchange tethers create a controlled force on the end-masses of the system due to the pseudo-force known as centrifugal force. While the tether system rotates, the objects on either end of the tether will experience continuous acceleration; the magnitude of the acceleration depends on the length of the tether and the rotation rate. Momentum exchange occurs when an end body is released during the rotation. The transfer of momentum to the released object will cause the rotating tether to lose energy, and thus lose velocity and altitude. However, using electrodynamic tether thrusting, or ion propulsion the system can then re-boost itself with little or no expenditure of consumable reaction mass.

In classical mechanics, Poinsot's construction is a geometrical method for visualizing the torque-free motion of a rotating rigid body, that is, the motion of a rigid body on which no external forces are acting. This motion has four constants: the kinetic energy of the body and the three components of the angular momentum, expressed with respect to an inertial laboratory frame. The angular velocity vector of the rigid rotor is not constant, but satisfies Euler's equations. The conservation of kinetic energy and angular momentum provide two constraints on the motion of .

<span class="mw-page-title-main">Orbit of the Moon</span> The Moons circuit around Earth

The Moon orbits Earth in the prograde direction and completes one revolution relative to the Vernal Equinox and the stars in about 27.32 days and one revolution relative to the Sun in about 29.53 days. Earth and the Moon orbit about their barycentre, which lies about 4,670 km (2,900 mi) from Earth's centre, forming a satellite system called the Earth–Moon system. On average, the distance to the Moon is about 385,000 km (239,000 mi) from Earth's centre, which corresponds to about 60 Earth radii or 1.282 light-seconds.

<span class="mw-page-title-main">Formation and evolution of the Solar System</span> Modelling its structure and composition

There is evidence that the formation of the Solar System began about 4.6 billion years ago with the gravitational collapse of a small part of a giant molecular cloud. Most of the collapsing mass collected in the center, forming the Sun, while the rest flattened into a protoplanetary disk out of which the planets, moons, asteroids, and other small Solar System bodies formed.

<span class="mw-page-title-main">Stellar rotation</span> Angular motion of a star about its axis

Stellar rotation is the angular motion of a star about its axis. The rate of rotation can be measured from the spectrum of the star, or by timing the movements of active features on the surface.

This page describes exoplanet orbital and physical parameters.

<span class="mw-page-title-main">History of Solar System formation and evolution hypotheses</span>

The history of scientific thought about the formation and evolution of the Solar System began with the Copernican Revolution. The first recorded use of the term "Solar System" dates from 1704. Since the seventeenth century, philosophers and scientists have been forming hypotheses concerning the origins of our Solar System and the Moon and attempting to predict how the Solar System would change in the future. René Descartes was the first to hypothesize on the beginning of the Solar System; however, more scientists joined the discussion in the eighteenth century, forming the groundwork for later hypotheses on the topic. Later, particularly in the twentieth century, a variety of hypotheses began to build up, including the now-commonly accepted nebular hypothesis.

<span class="mw-page-title-main">Retrograde and prograde motion</span> Relative directions of orbit or rotation

Retrograde motion in astronomy is, in general, orbital or rotational motion of an object in the direction opposite the rotation of its primary, that is, the central object. It may also describe other motions such as precession or nutation of an object's rotational axis. Prograde or direct motion is more normal motion in the same direction as the primary rotates. However, "retrograde" and "prograde" can also refer to an object other than the primary if so described. The direction of rotation is determined by an inertial frame of reference, such as distant fixed stars.

This glossary of astronomy is a list of definitions of terms and concepts relevant to astronomy and cosmology, their sub-disciplines, and related fields. Astronomy is concerned with the study of celestial objects and phenomena that originate outside the atmosphere of Earth. The field of astronomy features an extensive vocabulary and a significant amount of jargon.

<span class="mw-page-title-main">Origin of the Moon</span> Theories explaining the formation of Earths Moon

The origin of the Moon is usually explained by a Mars-sized body striking the Earth, creating a debris ring that eventually collected into a single natural satellite, the Moon, but there are a number of variations on this giant-impact hypothesis, as well as alternative explanations, and research continues into how the Moon came to be formed. Other proposed scenarios include captured body, fission, formed together, planetesimal collisions, and collision theories.

<span class="mw-page-title-main">Grand tack hypothesis</span> Theory of early changes in Jupiters orbit

In planetary astronomy, the grand tack hypothesis proposes that Jupiter formed at a distance of 3.5 AU from the Sun, then migrated inward to 1.5 AU, before reversing course due to capturing Saturn in an orbital resonance, eventually halting near its current orbit at 5.2 AU. The reversal of Jupiter's planetary migration is likened to the path of a sailboat changing directions (tacking) as it travels against the wind.

<span class="mw-page-title-main">Accretion disk</span> Structure formed by diffuse material in orbital motion around a massive central body

An accretion disk is a structure formed by diffuse material in orbital motion around a massive central body. The central body is most frequently a star. Friction, uneven irradiance, magnetohydrodynamic effects, and other forces induce instabilities causing orbiting material in the disk to spiral inward toward the central body. Gravitational and frictional forces compress and raise the temperature of the material, causing the emission of electromagnetic radiation. The frequency range of that radiation depends on the central object's mass. Accretion disks of young stars and protostars radiate in the infrared; those around neutron stars and black holes in the X-ray part of the spectrum. The study of oscillation modes in accretion disks is referred to as diskoseismology.

Sarah T. Stewart-Mukhopadhyay is an American planetary scientist known for studying planet formation, planetary geology, and materials science. She is a professor at the University of California, Davis in the Earth and Planetary Sciences Department. She was a professor at Harvard University Department of Earth and Planetary Sciences from 2003 to 2014.

The Secret History of the Moon is a 2020 short speculative animated documentary film created by astronomy-themed musician and filmmaker John D. Boswell. It explores the proposed explanations on how the Moon was formed, using rocks collected by Neil Armstrong and Buzz Aldrin during the 1969 Apollo 11 mission. The film was released on Boswell's YouTube channel Melodysheep on April 30.

<span class="mw-page-title-main">Toroidal planet</span> Planet in the shape of a toroidal or doughnut shape

A toroidal planet is a hypothetical type of telluric exoplanet with a toroidal or doughnut shape. While no firm theoretical understanding as to how toroidal planets could form naturally is necessarily known, the shape itself is potentially quasistable, and is analogous to the physical parameters of a speculatively constructible megastructure in self-suspension, such as a Dyson Ring, ringworld, Stanford torus or Bishop Ring.