# Gravitational wave

Last updated

Gravitational waves are disturbances in the curvature of spacetime, generated by accelerated masses, that propagate as waves outward from their source at the speed of light. They were proposed by Henri Poincaré in 1905 [1] and subsequently predicted in 1916 [2] [3] by Albert Einstein on the basis of his general theory of relativity. [4] [5] Gravitational waves transport energy as gravitational radiation, a form of radiant energy similar to electromagnetic radiation. [6] Newton's law of universal gravitation, part of classical mechanics, does not provide for their existence, since that law is predicated on the assumption that physical interactions propagate instantaneously (at infinite speed)  showing one of the ways the methods of classical physics are unable to explain phenomena associated with relativity.

In physics, spacetime is any mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams can be used to visualize relativistic effects such as why different observers perceive where and when events occur differently.

Wave propagation is any of the ways in which waves travel.

The speed of light in vacuum, commonly denoted c, is a universal physical constant important in many areas of physics. Its exact value is 299,792,458 metres per second. It is exact because by international agreement a metre is defined as the length of the path travelled by light in vacuum during a time interval of 1/299792458 second. According to special relativity, c is the maximum speed at which all conventional matter and hence all known forms of information in the universe can travel. Though this speed is most commonly associated with light, it is in fact the speed at which all massless particles and changes of the associated fields travel in vacuum. Such particles and waves travel at c regardless of the motion of the source or the inertial reference frame of the observer. In the special and general theories of relativity, c interrelates space and time, and also appears in the famous equation of mass–energy equivalence E = mc2.

## Contents

Gravitational-wave astronomy is a branch of observational astronomy that uses gravitational waves to collect observational data about sources of detectable gravitational waves such as binary star systems composed of white dwarfs, neutron stars, and black holes; and events such as supernovae, and the formation of the early universe shortly after the Big Bang.

Gravitational-wave astronomy is an emerging branch of observational astronomy which aims to use gravitational waves to collect observational data about objects such as neutron stars and black holes, events such as supernovae, and processes including those of the early universe shortly after the Big Bang.

Observational astronomy is a division of astronomy that is concerned with recording data about the observable universe, in contrast with theoretical astronomy, which is mainly concerned with calculating the measurable implications of physical models. It is the practice and study of observing celestial objects with the use of telescopes and other astronomical instruments.

A binary star is a star system consisting of two stars orbiting around their common barycenter. Systems of two or more stars are called multiple star systems. These systems, especially when more distant, often appear to the unaided eye as a single point of light, and are then revealed as multiple by other means. Research over the last two centuries suggests that half or more of visible stars are part of multiple star systems.

In 1993, Russell A. Hulse and Joseph H. Taylor, Jr. received the Nobel Prize in Physics for the discovery and observation of the Hulse-Taylor binary pulsar, which offered the first indirect evidence of the existence of gravitational waves. [7]

The Nobel Prize in Physics is a yearly award given by the Royal Swedish Academy of Sciences for those who have made the most outstanding contributions for mankind in the field of physics. It is one of the five Nobel Prizes established by the will of Alfred Nobel in 1895 and awarded since 1901; the others being the Nobel Prize in Chemistry, Nobel Prize in Literature, Nobel Peace Prize, and Nobel Prize in Physiology or Medicine.

On 11 February 2016, the LIGO and Virgo Scientific Collaboration announced they had made the first direct observation of gravitational waves. The observation was made five months earlier, on 14 September 2015, using the Advanced LIGO detectors. The gravitational waves originated from a pair of merging black holes. [8] [9] [10] After the initial announcement the LIGO instruments detected two more confirmed, and one potential, gravitational wave events. [11] [12] In August 2017, the two LIGO instruments and the Virgo instrument observed a fourth gravitational wave from merging black holes, [13] and a fifth gravitational wave from a binary neutron star merger. [14] Several other gravitational wave detectors are planned or under construction. [15]

The Laser Interferometer Gravitational-Wave Observatory (LIGO) is a large-scale physics experiment and observatory to detect cosmic gravitational waves and to develop gravitational-wave observations as an astronomical tool. Two large observatories were built in the United States with the aim of detecting gravitational waves by laser interferometry. These can detect a change in the 4 km mirror spacing of less than a ten-thousandth the charge diameter of a proton.

The Virgo interferometer is a large interferometer designed to detect gravitational waves predicted by the general theory of relativity. Virgo is a Michelson interferometer that is isolated from external disturbances: its mirrors and instrumentation are suspended and its laser beam operates in a vacuum. The instrument's two arms are three kilometres long and located in Santo Stefano a Macerata, near the city of Pisa, Italy.

The first direct observation of gravitational waves was made on 14 September 2015 and was announced by the LIGO and Virgo collaborations on 11 February 2016. Previously, gravitational waves had only been inferred indirectly, via their effect on the timing of pulsars in binary star systems. The waveform, detected by both LIGO observatories, matched the predictions of general relativity for a gravitational wave emanating from the inward spiral and merger of a pair of black holes of around 36 and 29 solar masses and the subsequent "ringdown" of the single resulting black hole. The signal was named GW150914. It was also the first observation of a binary black hole merger, demonstrating both the existence of binary stellar-mass black hole systems and the fact that such mergers could occur within the current age of the universe.

In 2017, the Nobel Prize in Physics was awarded to Rainer Weiss, Kip Thorne and Barry Barish for their role in the direct detection of gravitational waves. [16] [17] [18]

Rainer "Rai" Weiss is an American physicist, known for his contributions in gravitational physics and astrophysics. He is a professor of physics emeritus at MIT and an adjunct professor at LSU. He is best known for inventing the laser interferometric technique which is the basic operation of LIGO. He was Chair of the COBE Science Working Group.

Kip Stephen Thorne is an American theoretical physicist and Nobel laureate, known for his contributions in gravitational physics and astrophysics. A longtime friend and colleague of Stephen Hawking and Carl Sagan, he was the Feynman Professor of Theoretical Physics at the California Institute of Technology (Caltech) until 2009 and is one of the world's leading experts on the astrophysical implications of Einstein's general theory of relativity. He continues to do scientific research and scientific consulting, most notably for the Christopher Nolan film Interstellar.

Barry Clark Barish is an American experimental physicist and Nobel Laureate. He is a Linde Professor of Physics, emeritus at California Institute of Technology. He is a leading expert on gravitational waves.

## Introduction

In Einstein's general theory of relativity, gravity is treated as a phenomenon resulting from the curvature of spacetime. This curvature is caused by the presence of mass. Generally, the more mass that is contained within a given volume of space, the greater the curvature of spacetime will be at the boundary of its volume. [19] As objects with mass move around in spacetime, the curvature changes to reflect the changed locations of those objects. In certain circumstances, accelerating objects generate changes in this curvature, which propagate outwards at the speed of light in a wave-like manner. These propagating phenomena are known as gravitational waves.

Albert Einstein was a German-born theoretical physicist who developed the theory of relativity, one of the two pillars of modern physics. His work is also known for its influence on the philosophy of science. He is best known to the general public for his mass–energy equivalence formula E = mc2, which has been dubbed "the world's most famous equation". He received the 1921 Nobel Prize in Physics "for his services to theoretical physics, and especially for his discovery of the law of the photoelectric effect", a pivotal step in the development of quantum theory.

General relativity is the geometric theory of gravitation published by Albert Einstein in 1915 and the current description of gravitation in modern physics. General relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time, or spacetime. In particular, the curvature of spacetime is directly related to the energy and momentum of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of partial differential equations.

Gravity, or gravitation, is a natural phenomenon by which all things with mass or energy—including planets, stars, galaxies, and even light—are brought toward one another. On Earth, gravity gives weight to physical objects, and the Moon's gravity causes the ocean tides. The gravitational attraction of the original gaseous matter present in the Universe caused it to begin coalescing, forming stars—and for the stars to group together into galaxies—so gravity is responsible for many of the large-scale structures in the Universe. Gravity has an infinite range, although its effects become increasingly weaker on farther objects.

As a gravitational wave passes an observer, that observer will find spacetime distorted by the effects of strain. Distances between objects increase and decrease rhythmically as the wave passes, at a frequency equal to that of the wave. This occurs despite such free objects never being subjected to an unbalanced force. The magnitude of this effect decreases in proportion to the inverse distance from the source. [20] :227 Inspiraling binary neutron stars are predicted to be a powerful source of gravitational waves as they coalesce, due to the very large acceleration of their masses as they orbit close to one another. However, due to the astronomical distances to these sources, the effects when measured on Earth are predicted to be very small, having strains of less than 1 part in 1020. Scientists have demonstrated the existence of these waves with ever more sensitive detectors. The most sensitive detector accomplished the task possessing a sensitivity measurement of about one part in 5×1022 (as of 2012) provided by the LIGO and VIRGO observatories. [21] A space based observatory, the Laser Interferometer Space Antenna, is currently under development by ESA.

Gravitational waves can penetrate regions of space that electromagnetic waves cannot. They are able to allow the observation of the merger of black holes and possibly other exotic objects in the distant Universe. Such systems cannot be observed with more traditional means such as optical telescopes or radio telescopes, and so gravitational wave astronomy gives new insights into the working of the Universe. In particular, gravitational waves could be of interest to cosmologists as they offer a possible way of observing the very early Universe. This is not possible with conventional astronomy, since before recombination the Universe was opaque to electromagnetic radiation. [22] Precise measurements of gravitational waves will also allow scientists to test more thoroughly the general theory of relativity.

In principle, gravitational waves could exist at any frequency. However, very low frequency waves would be impossible to detect and there is no credible source for detectable waves of very high frequency. Stephen Hawking and Werner Israel list different frequency bands for gravitational waves that could plausibly be detected, ranging from 10−7 Hz up to 1011 Hz. [23]

## History

The possibility of gravitational waves was discussed in 1893 by Oliver Heaviside using the analogy between the inverse-square law in gravitation and electricity. [27] In 1905, Henri Poincaré proposed gravitational waves, emanating from a body and propagating at the speed of light, as being required by the Lorentz transformations [28] and suggested that, in analogy to an accelerating electrical charge producing electromagnetic waves, accelerated masses in a relativistic field theory of gravity should produce gravitational waves. [29] [30] When Einstein published his general theory of relativity in 1915, he was skeptical of Poincaré's idea since the theory implied there were no "gravitational dipoles". Nonetheless, he still pursued the idea and based on various approximations came to the conclusion there must, in fact, be three types of gravitational waves (dubbed longitudinal-longitudinal, transverse-longitudinal, and transverse-transverse by Hermann Weyl). [30]

However, the nature of Einstein's approximations led many (including Einstein himself) to doubt the result. In 1922, Arthur Eddington showed that two of Einstein's types of waves were artifacts of the coordinate system he used, and could be made to propagate at any speed by choosing appropriate coordinates, leading Eddington to jest that they "propagate at the speed of thought". [31] :72 This also cast doubt on the physicality of the third (transverse-transverse) type that Eddington showed always propagate at the speed of light regardless of coordinate system. In 1936, Einstein and Nathan Rosen submitted a paper to Physical Review in which they claimed gravitational waves could not exist in the full general theory of relativity because any such solution of the field equations would have a singularity. The journal sent their manuscript to be reviewed by Howard P. Robertson, who anonymously reported that the singularities in question were simply the harmless coordinate singularities of the employed cylindrical coordinates. Einstein, who was unfamiliar with the concept of peer review, angrily withdrew the manuscript, never to publish in Physical Review again. Nonetheless, his assistant Leopold Infeld, who had been in contact with Robertson, convinced Einstein that the criticism was correct, and the paper was rewritten with the opposite conclusion and published elsewhere. [30] [31] :79ff

In 1956, Felix Pirani remedied the confusion caused by the use of various coordinate systems by rephrasing the gravitational waves in terms of the manifestly observable Riemann curvature tensor. At the time this work was mostly ignored because the community was focused on a different question: whether gravitational waves could transmit energy. This matter was settled by a thought experiment proposed by Richard Feynman during the first "GR" conference at Chapel Hill in 1957. In short, his argument known as the "sticky bead argument" notes that if one takes a rod with beads then the effect of a passing gravitational wave would be to move the beads along the rod; friction would then produce heat, implying that the passing wave had done work. Shortly after, Hermann Bondi, a former gravitational wave skeptic, published a detailed version of the "sticky bead argument". [30]

After the Chapel Hill conference, Joseph Weber started designing and building the first gravitational wave detectors now known as Weber bars. In 1969, Weber claimed to have detected the first gravitational waves, and by 1970 he was "detecting" signals regularly from the Galactic Center; however, the frequency of detection soon raised doubts on the validity of his observations as the implied rate of energy loss of the Milky Way would drain our galaxy of energy on a timescale much shorter than its inferred age. These doubts were strengthened when, by the mid-1970s, repeated experiments from other groups building their own Weber bars across the globe failed to find any signals, and by the late 1970s general consensus was that Weber's results were spurious. [30]

In the same period, the first indirect evidence for the existence of gravitational waves was discovered. In 1974, Russell Alan Hulse and Joseph Hooton Taylor, Jr. discovered the first binary pulsar, a discovery that earned them the 1993 Nobel Prize in Physics. Pulsar timing observations over the next decade showed a gradual decay of the orbital period of the Hulse-Taylor pulsar that matched the loss of energy and angular momentum in gravitational radiation predicted by general relativity. [32] [33] [30]

This indirect detection of gravitational waves motivated further searches despite Weber's discredited result. Some groups continued to improve Weber's original concept, while others pursued the detection of gravitational waves using laser interferometers. The idea of using a laser interferometer to detect gravitational waves seems to have been floated by various people independently, including M. E. Gertsenshtein and V. I. Pustovoit in 1962, [34] and Vladimir B. Braginskiĭ in 1966. The first prototypes were developed in the 1970s by Robert L. Forward and Rainer Weiss. [35] [36] In the decades that followed, ever more sensitive instruments were constructed, culminating in the construction of GEO600, LIGO, and Virgo. [30]

After years of producing null results improved detectors became operational in 2015 - LIGO made the first direct detection of gravitational waves on 14 September 2015. It was inferred that the signal, dubbed GW150914, originated from the merger of two black holes with masses 36+5
−4
M⊙ and 29+4
−4
M⊙, resulting in a 62+4
−4
M⊙ black hole. This suggested that the gravitational wave signal carried the energy of roughly three solar masses, or about 5 x 1047 joules. [8] [9] [10]

A year earlier it appeared LIGO might have been beaten to the punch when the BICEP2 claimed that they had detected the imprint of gravitational waves in the cosmic microwave background. However, they were later forced to retract their result. [24] [25] [37] [38]

In 2017, the Nobel Prize in Physics was awarded to Rainer Weiss, Kip Thorne and Barry Barish for their role in the detection of gravitational waves. [16] [17] [18]

## Effects of passing

Gravitational waves are constantly passing Earth; however, even the strongest have a minuscule effect and their sources are generally at a great distance. For example, the waves given off by the cataclysmic final merger of GW150914 reached Earth after travelling over a billion light-years, as a ripple in spacetime that changed the length of a 4-km LIGO arm by a thousandth of the width of a proton, proportionally equivalent to changing the distance to the nearest star outside the Solar System by one hair's width. [39] This tiny effect from even extreme gravitational waves makes them observable on Earth only with the most sophisticated detectors.

The effects of a passing gravitational wave, in an extremely exaggerated form, can be visualized by imagining a perfectly flat region of spacetime with a group of motionless test particles lying in a plane, e.g. the surface of a computer screen. As a gravitational wave passes through the particles along a line perpendicular to the plane of the particles, i.e. following the observer's line of vision into the screen, the particles will follow the distortion in spacetime, oscillating in a "cruciform" manner, as shown in the animations. The area enclosed by the test particles does not change and there is no motion along the direction of propagation.[ citation needed ]

The oscillations depicted in the animation are exaggerated for the purpose of discussion  in reality a gravitational wave has a very small amplitude (as formulated in linearized gravity). However, they help illustrate the kind of oscillations associated with gravitational waves as produced by a pair of masses in a circular orbit. In this case the amplitude of the gravitational wave is constant, but its plane of polarization changes or rotates at twice the orbital rate, so the time-varying gravitational wave size, or 'periodic spacetime strain', exhibits a variation as shown in the animation. [40] If the orbit of the masses is elliptical then the gravitational wave's amplitude also varies with time according to Einstein's quadrupole formula. [3]

As with other waves, there are a number of characteristics used to describe a gravitational wave:

• Amplitude: Usually denoted h, this is the size of the wave  the fraction of stretching or squeezing in the animation. The amplitude shown here is roughly h = 0.5 (or 50%). Gravitational waves passing through the Earth are many sextillion times weaker than this h ≈ 10−20.
• Frequency : Usually denoted f, this is the frequency with which the wave oscillates (1 divided by the amount of time between two successive maximum stretches or squeezes)
• Wavelength : Usually denoted λ, this is the distance along the wave between points of maximum stretch or squeeze.
• Speed : This is the speed at which a point on the wave (for example, a point of maximum stretch or squeeze) travels. For gravitational waves with small amplitudes, this wave speed is equal to the speed of light (c).

The speed, wavelength, and frequency of a gravitational wave are related by the equation c = λ f, just like the equation for a light wave. For example, the animations shown here oscillate roughly once every two seconds. This would correspond to a frequency of 0.5 Hz, and a wavelength of about 600 000 km, or 47 times the diameter of the Earth.

In the above example, it is assumed that the wave is linearly polarized with a "plus" polarization, written h+. Polarization of a gravitational wave is just like polarization of a light wave except that the polarizations of a gravitational wave are 45 degrees apart, as opposed to 90 degrees.[ citation needed ] In particular, in a "cross"-polarized gravitational wave, h×, the effect on the test particles would be basically the same, but rotated by 45 degrees, as shown in the second animation. Just as with light polarization, the polarizations of gravitational waves may also be expressed in terms of circularly polarized waves. Gravitational waves are polarized because of the nature of their source.

## Sources

In general terms, gravitational waves are radiated by objects whose motion involves acceleration and its change, provided that the motion is not perfectly spherically symmetric (like an expanding or contracting sphere) or rotationally symmetric (like a spinning disk or sphere). A simple example of this principle is a spinning dumbbell. If the dumbbell spins around its axis of symmetry, it will not radiate gravitational waves; if it tumbles end over end, as in the case of two planets orbiting each other, it will radiate gravitational waves. The heavier the dumbbell, and the faster it tumbles, the greater is the gravitational radiation it will give off. In an extreme case, such as when the two weights of the dumbbell are massive stars like neutron stars or black holes, orbiting each other quickly, then significant amounts of gravitational radiation would be given off.

Some more detailed examples:

• Two objects orbiting each other, as a planet would orbit the Sun, will radiate.
• A spinning non-axisymmetric planetoid  say with a large bump or dimple on the equator will radiate.
• A supernova will radiate except in the unlikely event that the explosion is perfectly symmetric.
• An isolated non-spinning solid object moving at a constant velocity will not radiate. This can be regarded as a consequence of the principle of conservation of linear momentum.
• A spinning disk will not radiate. This can be regarded as a consequence of the principle of conservation of angular momentum. However, it will show gravitomagnetic effects.
• A spherically pulsating spherical star (non-zero monopole moment or mass, but zero quadrupole moment) will not radiate, in agreement with Birkhoff's theorem.

More technically, the second time derivative of the quadrupole moment (or the l-th time derivative of the l-th multipole moment) of an isolated system's stress–energy tensor must be non-zero in order for it to emit gravitational radiation. This is analogous to the changing dipole moment of charge or current that is necessary for the emission of electromagnetic radiation.

### Binaries

Gravitational waves carry energy away from their sources and, in the case of orbiting bodies, this is associated with an in-spiral or decrease in orbit. [42] [43] Imagine for example a simple system of two masses  such as the Earth–Sun system  moving slowly compared to the speed of light in circular orbits. Assume that these two masses orbit each other in a circular orbit in the xy plane. To a good approximation, the masses follow simple Keplerian orbits. However, such an orbit represents a changing quadrupole moment. That is, the system will give off gravitational waves.

In theory, the loss of energy through gravitational radiation could eventually drop the Earth into the Sun. However, the total energy of the Earth orbiting the Sun (kinetic energy + gravitational potential energy) is about 1.14×1036 joules of which only 200 watts (joules per second) is lost through gravitational radiation, leading to a decay in the orbit by about 1×1015 meters per day or roughly the diameter of a proton. At this rate, it would take the Earth approximately 1×1013 times more than the current age of the Universe to spiral onto the Sun. This estimate overlooks the decrease in r over time, but the majority of the time the bodies are far apart and only radiating slowly, so the difference is unimportant in this example.[ citation needed ]

More generally, the rate of orbital decay can be approximated by [44]

${\displaystyle {\frac {\mathrm {d} r}{\mathrm {d} t}}=-{\frac {64}{5}}\,{\frac {G^{3}}{c^{5}}}\,{\frac {(m_{1}m_{2})(m_{1}+m_{2})}{r^{3}}}\ ,}$

where r is the separation between the bodies, t time, G the gravitational constant, c the speed of light, and m1 and m2 the masses of the bodies. This leads to an expected time to merger of [44]

${\displaystyle t={\frac {5}{256}}\,{\frac {c^{5}}{G^{3}}}\,{\frac {r^{4}}{(m_{1}m_{2})(m_{1}+m_{2})}}.}$

#### Compact binaries

Compact stars like white dwarfs and neutron stars can be constituents of binaries. For example, a pair of solar mass neutron stars in a circular orbit at a separation of 1.89×108 m (189,000 km) has an orbital period of 1,000 seconds, and an expected lifetime of 1.30×1013 seconds or about 414,000 years. Such a system could be observed by LISA if it were not too far away. A far greater number of white dwarf binaries exist with orbital periods in this range. White dwarf binaries have masses in the order of the Sun, and diameters in the order of the Earth. They cannot get much closer together than 10,000 km before they will merge and explode in a supernova which would also end the emission of gravitational waves. Until then, their gravitational radiation would be comparable to that of a neutron star binary.

When the orbit of a neutron star binary has decayed to 1.89×106 m (1890 km), its remaining lifetime is about 130,000 seconds or 36 hours. The orbital frequency will vary from 1 orbit per second at the start, to 918 orbits per second when the orbit has shrunk to 20 km at merger. The majority of gravitational radiation emitted will be at twice the orbital frequency. Just before merger, the inspiral could be observed by LIGO if such a binary were close enough. LIGO has only a few minutes to observe this merger out of a total orbital lifetime that may have been billions of years. ln August 2017, LIGO and Virgo observed the first binary neutron star inspiral in GW170817, and 70 observatories collaborated to detect the electromagnetic counterpart, a kilonova in the galaxy NGC 4993, 40 megaparsecs away, emitting a short gamma ray burst (GRB 170817A) seconds after the merger, followed by a longer optical transient (AT 2017gfo) powered by r-process nuclei. Advanced LIGO detector should be able to detect such events up to 200 megaparsecs away. Within this range of the order 40 events are expected per year. [46]

### Black hole binaries

Black hole binaries emit gravitational waves during their in-spiral, merger, and ring-down phases. The largest amplitude of emission occurs during the merger phase, which can be modeled with the techniques of numerical relativity. [47] [48] [49] The first direct detection of gravitational waves, GW150914, came from the merger of two black holes.

### Supernovae

A supernova is a transient astronomical event that occurs during the last stellar evolutionary stages of a massive star's life, whose dramatic and catastrophic destruction is marked by one final titanic explosion. This explosion can happen in one of many ways, but in all of them a significant proportion of the matter in the star is blown away into the surrounding space at extremely high velocities (up to 10% of the speed of light). Unless there is perfect spherical symmetry in these explosions (i.e., unless matter is spewed out evenly in all directions), there will be gravitational radiation from the explosion. This is because gravitational waves are generated by a changing quadrupole moment, which can happen only when there is asymmetrical movement of masses. Since the exact mechanism by which supernovae take place is not fully understood, it is not easy to model the gravitational radiation emitted by them.

### Spinning neutron stars

As noted above, a mass distribution will emit gravitational radiation only when there is spherically asymmetric motion among the masses. A spinning neutron star will generally emit no gravitational radiation because neutron stars are highly dense objects with a strong gravitational field that keeps them almost perfectly spherical. In some cases, however, there might be slight deformities on the surface called "mountains", which are bumps extending no more than 10 centimeters (4 inches) above the surface, [50] that make the spinning spherically asymmetric. This gives the star a quadrupole moment that changes with time, and it will emit gravitational waves until the deformities are smoothed out.

### Inflation

Many models of the Universe suggest that there was an inflationary epoch in the early history of the Universe when space expanded by a large factor in a very short amount of time. If this expansion was not symmetric in all directions, it may have emitted gravitational radiation detectable today as a gravitational wave background. This background signal is too weak for any currently operational gravitational wave detector to observe, and it is thought it may be decades before such an observation can be made.

## Properties and behaviour

### Energy, momentum, and angular momentum

Water waves, sound waves, and electromagnetic waves are able to carry energy, momentum, and angular momentum and by doing so they carry those away from the source. Gravitational waves perform the same function. Thus, for example, a binary system loses angular momentum as the two orbiting objects spiral towards each other—the angular momentum is radiated away by gravitational waves.

The waves can also carry off linear momentum, a possibility that has some interesting implications for astrophysics. [51] After two supermassive black holes coalesce, emission of linear momentum can produce a "kick" with amplitude as large as 4000 km/s. This is fast enough to eject the coalesced black hole completely from its host galaxy. Even if the kick is too small to eject the black hole completely, it can remove it temporarily from the nucleus of the galaxy, after which it will oscillate about the center, eventually coming to rest. [52] A kicked black hole can also carry a star cluster with it, forming a hyper-compact stellar system. [53] Or it may carry gas, allowing the recoiling black hole to appear temporarily as a "naked quasar". The quasar SDSS J092712.65+294344.0 is thought to contain a recoiling supermassive black hole. [54]

### Redshifting

Like electromagnetic waves, gravitational waves should exhibit shifting of wavelength due to the relative velocities of the source and observer, but also due to distortions of space-time, such as cosmic expansion.[ citation needed ] This is the case even though gravity itself is a cause of distortions of space-time.[ citation needed ] Redshifting of gravitational waves is different from redshifting due to gravity.

### Quantum gravity, wave-particle aspects, and graviton

In the framework of quantum field theory, the graviton is the name given to a hypothetical elementary particle speculated to be the force carrier that mediates gravity. However the graviton is not yet proven to exist, and no scientific model yet exists that successfully reconciles general relativity, which describes gravity, and the Standard Model, which describes all other fundamental forces. Attempts, such as quantum gravity, have been made, but are not yet accepted.

If such a particle exists, it is expected to be massless (because the gravitational force appears to have unlimited range) and must be a spin-2 boson. It can be shown that any massless spin-2 field would give rise to a force indistinguishable from gravitation, because a massless spin-2 field must couple to (interact with) the stress–energy tensor in the same way that the gravitational field does; therefore if a massless spin-2 particle were ever discovered, it would be likely to be the graviton without further distinction from other massless spin-2 particles. [55] Such a discovery would unite quantum theory with gravity. [56]

### Significance for study of the early universe

Due to the weakness of the coupling of gravity to matter, gravitational waves experience very little absorption or scattering, even as they travel over astronomical distances. In particular, gravitational waves are expected to be unaffected by the opacity of the very early universe. In these early phases, space had not yet become "transparent," so observations based upon light, radio waves, and other electromagnetic radiation that far back into time are limited or unavailable. Therefore, gravitational waves are expected in principle to have the potential to provide a wealth of observational data about the very early universe.

### Determining direction of travel

The difficulty in directly detecting gravitational waves, means it is also difficult for a single detector to identify by itself the direction of a source. Therefore, multiple detectors are used, both to distinguish signals from other "noise" by confirming the signal is not of earthly origin, and also to determine direction by means of triangulation. This technique uses the fact that the waves travel at the speed of light and will reach different detectors at different times depending on their source direction. Although the differences in arrival time may be just a few milliseconds, this is sufficient to identify the direction of the origin of the wave with considerable precision.

Only in the case of GW170814 were three detectors operating at the time of the event, therefore, the direction is precisely defined. The detection by all three instruments led to a very accurate estimate of the position of the source, with a 90% credible region of just 60 deg2, a factor 20 more accurate than before. [57]

## Gravitational wave astronomy

During the past century, astronomy has been revolutionized by the use of new methods for observing the universe. Astronomical observations were originally made using visible light. Galileo Galilei pioneered the use of telescopes to enhance these observations. However, visible light is only a small portion of the electromagnetic spectrum, and not all objects in the distant universe shine strongly in this particular band. More useful information may be found, for example, in radio wavelengths. Using radio telescopes, astronomers have found pulsars, quasars, and made other unprecedented discoveries of objects not formerly known to scientists. Observations in the microwave band led to the detection of faint imprints of the Big Bang, a discovery Stephen Hawking called the "greatest discovery of the century, if not all time". Similar advances in observations using gamma rays, x-rays, ultraviolet light, and infrared light have also brought new insights to astronomy. As each of these regions of the spectrum has opened, new discoveries have been made that could not have been made otherwise. Astronomers hope that the same holds true of gravitational waves. [58]

Gravitational waves have two important and unique properties. First, there is no need for any type of matter to be present nearby in order for the waves to be generated by a binary system of uncharged black holes, which would emit no electromagnetic radiation. Second, gravitational waves can pass through any intervening matter without being scattered significantly. Whereas light from distant stars may be blocked out by interstellar dust, for example, gravitational waves will pass through essentially unimpeded. These two features allow gravitational waves to carry information about astronomical phenomena heretofore never observed by humans. [59]

The sources of gravitational waves described above are in the low-frequency end of the gravitational-wave spectrum (10−7 to 105 Hz). An astrophysical source at the high-frequency end of the gravitational-wave spectrum (above 105 Hz and probably 1010 Hz) generates[ clarification needed ] relic gravitational waves that are theorized to be faint imprints of the Big Bang like the cosmic microwave background. [60] At these high frequencies it is potentially possible that the sources may be "man made" [23] that is, gravitational waves generated and detected in the laboratory. [61] [62]

A supermassive black hole, created from the merger of the black holes at the center of two merging galaxies detected by the Hubble Space Telescope, is theorized to have been ejected from the merger center by gravitational waves. [63] [64]

## Detection

### Indirect detection

Although the waves from the Earth–Sun system are minuscule, astronomers can point to other sources for which the radiation should be substantial. One important example is the Hulse–Taylor binary   a pair of stars, one of which is a pulsar. [66] The characteristics of their orbit can be deduced from the Doppler shifting of radio signals given off by the pulsar. Each of the stars is about 1.4 M and the size of their orbits is about 1/75 of the Earth–Sun orbit, just a few times larger than the diameter of our own Sun. The combination of greater masses and smaller separation means that the energy given off by the Hulse–Taylor binary will be far greater than the energy given off by the Earth–Sun system  roughly 1022 times as much.

The information about the orbit can be used to predict how much energy (and angular momentum) would be radiated in the form of gravitational waves. As the binary system loses energy, the stars gradually draw closer to each other, and the orbital period decreases. The resulting trajectory of each star is an inspiral, a spiral with decreasing radius. General relativity precisely describes these trajectories; in particular, the energy radiated in gravitational waves determines the rate of decrease in the period, defined as the time interval between successive periastrons (points of closest approach of the two stars). For the Hulse-Taylor pulsar, the predicted current change in radius is about 3 mm per orbit, and the change in the 7.75 hr period is about 2 seconds per year. Following a preliminary observation showing an orbital energy loss consistent with gravitational waves, [32] careful timing observations by Taylor and Joel Weisberg dramatically confirmed the predicted period decrease to within 10%. [67] With the improved statistics of more than 30 years of timing data since the pulsar's discovery, the observed change in the orbital period currently matches the prediction from gravitational radiation assumed by general relativity to within 0.2 percent. [68] In 1993, spurred in part by this indirect detection of gravitational waves, the Nobel Committee awarded the Nobel Prize in Physics to Hulse and Taylor for "the discovery of a new type of pulsar, a discovery that has opened up new possibilities for the study of gravitation." [69] The lifetime of this binary system, from the present to merger is estimated to be a few hundred million years. [70]

Inspirals are very important sources of gravitational waves. Any time two compact objects (white dwarfs, neutron stars, or black holes) are in close orbits, they send out intense gravitational waves. As they spiral closer to each other, these waves become more intense. At some point they should become so intense that direct detection by their effect on objects on Earth or in space is possible. This direct detection is the goal of several large scale experiments. [71]

The only difficulty is that most systems like the Hulse–Taylor binary are so far away. The amplitude of waves given off by the Hulse–Taylor binary at Earth would be roughly h ≈ 10−26. There are some sources, however, that astrophysicists expect to find that produce much greater amplitudes of h ≈ 10−20. At least eight other binary pulsars have been discovered. [72]

### Difficulties

Gravitational waves are not easily detectable. When they reach the Earth, they have a small amplitude with strain approximates 10−21, meaning that an extremely sensitive detector is needed, and that other sources of noise can overwhelm the signal. [73] Gravitational waves are expected to have frequencies 10−16 Hz < f < 104 Hz. [74]

### Ground-based detectors

Though the Hulse–Taylor observations were very important, they give only indirect evidence for gravitational waves. A more conclusive observation would be a direct measurement of the effect of a passing gravitational wave, which could also provide more information about the system that generated it. Any such direct detection is complicated by the extraordinarily small effect the waves would produce on a detector. The amplitude of a spherical wave will fall off as the inverse of the distance from the source (the 1/R term in the formulas for h above). Thus, even waves from extreme systems like merging binary black holes die out to very small amplitudes by the time they reach the Earth. Astrophysicists expect that some gravitational waves passing the Earth may be as large as h ≈ 10−20, but generally no bigger. [75]

#### Resonant antennae

A simple device theorised to detect the expected wave motion is called a Weber bar   a large, solid bar of metal isolated from outside vibrations. This type of instrument was the first type of gravitational wave detector. Strains in space due to an incident gravitational wave excite the bar's resonant frequency and could thus be amplified to detectable levels. Conceivably, a nearby supernova might be strong enough to be seen without resonant amplification. With this instrument, Joseph Weber claimed to have detected daily signals of gravitational waves. His results, however, were contested in 1974 by physicists Richard Garwin and David Douglass. Modern forms of the Weber bar are still operated, cryogenically cooled, with superconducting quantum interference devices to detect vibration. Weber bars are not sensitive enough to detect anything but extremely powerful gravitational waves. [76]

MiniGRAIL is a spherical gravitational wave antenna using this principle. It is based at Leiden University, consisting of an exactingly machined 1,150 kg sphere cryogenically cooled to 20 millikelvins. [77] The spherical configuration allows for equal sensitivity in all directions, and is somewhat experimentally simpler than larger linear devices requiring high vacuum. Events are detected by measuring deformation of the detector sphere. MiniGRAIL is highly sensitive in the 2–4 kHz range, suitable for detecting gravitational waves from rotating neutron star instabilities or small black hole mergers. [78]

There are currently two detectors focused on the higher end of the gravitational wave spectrum (10−7 to 105 Hz): one at University of Birmingham, England, [79] and the other at INFN Genoa, Italy. A third is under development at Chongqing University, China. The Birmingham detector measures changes in the polarization state of a microwave beam circulating in a closed loop about one meter across. Both detectors are expected to be sensitive to periodic spacetime strains of h ~ 2×10−13 /Hz, given as an amplitude spectral density. The INFN Genoa detector is a resonant antenna consisting of two coupled spherical superconducting harmonic oscillators a few centimeters in diameter. The oscillators are designed to have (when uncoupled) almost equal resonant frequencies. The system is currently expected to have a sensitivity to periodic spacetime strains of h ~ 2×10−17 /Hz, with an expectation to reach a sensitivity of h ~ 2×10−20 /Hz. The Chongqing University detector is planned to detect relic high-frequency gravitational waves with the predicted typical parameters ~1011 Hz (100 GHz) and h ~10−30 to 10−32. [80]

#### Interferometers

A more sensitive class of detector uses laser interferometry to measure gravitational-wave induced motion between separated 'free' masses. [81] This allows the masses to be separated by large distances (increasing the signal size); a further advantage is that it is sensitive to a wide range of frequencies (not just those near a resonance as is the case for Weber bars). After years of development the first ground-based interferometers became operational in 2015. Currently, the most sensitive is LIGO   the Laser Interferometer Gravitational Wave Observatory. LIGO has three detectors: one in Livingston, Louisiana, one at the Hanford site in Richland, Washington and a third (formerly installed as a second detector at Hanford) that is planned to be moved to India. Each observatory has two light storage arms that are 4 kilometers in length. These are at 90 degree angles to each other, with the light passing through 1 m diameter vacuum tubes running the entire 4 kilometers. A passing gravitational wave will slightly stretch one arm as it shortens the other. This is precisely the motion to which an interferometer is most sensitive.

Even with such long arms, the strongest gravitational waves will only change the distance between the ends of the arms by at most roughly 10−18 m. LIGO should be able to detect gravitational waves as small as h ~ 5×10−22. Upgrades to LIGO and Virgo should increase the sensitivity still further. Another highly sensitive interferometer, KAGRA, is under construction in the Kamiokande mine in Japan. A key point is that a tenfold increase in sensitivity (radius of 'reach') increases the volume of space accessible to the instrument by one thousand times. This increases the rate at which detectable signals might be seen from one per tens of years of observation, to tens per year. [82]

Interferometric detectors are limited at high frequencies by shot noise, which occurs because the lasers produce photons randomly; one analogy is to rainfall  the rate of rainfall, like the laser intensity, is measurable, but the raindrops, like photons, fall at random times, causing fluctuations around the average value. This leads to noise at the output of the detector, much like radio static. In addition, for sufficiently high laser power, the random momentum transferred to the test masses by the laser photons shakes the mirrors, masking signals of low frequencies. Thermal noise (e.g., Brownian motion) is another limit to sensitivity. In addition to these 'stationary' (constant) noise sources, all ground-based detectors are also limited at low frequencies by seismic noise and other forms of environmental vibration, and other 'non-stationary' noise sources; creaks in mechanical structures, lightning or other large electrical disturbances, etc. may also create noise masking an event or may even imitate an event. All these must be taken into account and excluded by analysis before detection may be considered a true gravitational wave event.

#### Einstein@Home

The simplest gravitational waves are those with constant frequency. The waves given off by a spinning, non-axisymmetric neutron star would be approximately monochromatic: a pure tone in acoustics. Unlike signals from supernovae or binary black holes, these signals evolve little in amplitude or frequency over the period it would be observed by ground-based detectors. However, there would be some change in the measured signal, because of Doppler shifting caused by the motion of the Earth. Despite the signals being simple, detection is extremely computationally expensive, because of the long stretches of data that must be analysed.

The Einstein@Home project is a distributed computing project similar to SETI@home intended to detect this type of gravitational wave. By taking data from LIGO and GEO, and sending it out in little pieces to thousands of volunteers for parallel analysis on their home computers, Einstein@Home can sift through the data far more quickly than would be possible otherwise. [83]

### Space-based interferometers

Space-based interferometers, such as LISA and DECIGO, are also being developed. LISA's design calls for three test masses forming an equilateral triangle, with lasers from each spacecraft to each other spacecraft forming two independent interferometers. LISA is planned to occupy a solar orbit trailing the Earth, with each arm of the triangle being five million kilometers. This puts the detector in an excellent vacuum far from Earth-based sources of noise, though it will still be susceptible to heat, shot noise, and artifacts caused by cosmic rays and solar wind.

### Using pulsar timing arrays

Pulsars are rapidly rotating stars. A pulsar emits beams of radio waves that, like lighthouse beams, sweep through the sky as the pulsar rotates. The signal from a pulsar can be detected by radio telescopes as a series of regularly spaced pulses, essentially like the ticks of a clock. GWs affect the time it takes the pulses to travel from the pulsar to a telescope on Earth. A pulsar timing array uses millisecond pulsars to seek out perturbations due to GWs in measurements of the time of arrival of pulses to a telescope, in other words, to look for deviations in the clock ticks. To detect GWs, pulsar timing arrays search for a distinct pattern of correlation and anti-correlation between the time of arrival of pulses from several pulsars. [84] Although pulsar pulses travel through space for hundreds or thousands of years to reach us, pulsar timing arrays are sensitive to perturbations in their travel time of much less than a millionth of a second.

The principal source of GWs to which pulsar timing arrays are sensitive are super-massive black hole binaries, that form from the collision of galaxies. [85] In addition to individual binary systems, pulsar timing arrays are sensitive to a stochastic background of GWs made from the sum of GWs from many galaxy mergers. Other potential signal sources include cosmic strings and the primordial background of GWs from cosmic inflation.

Globally there are three active pulsar timing array projects. The North American Nanohertz Observatory for Gravitational Waves uses data collected by the Arecibo Radio Telescope and Green Bank Telescope. The Australian Parkes Pulsar Timing Array uses data from the Parkes radio-telescope. The European Pulsar Timing Array uses data from the four largest telescopes in Europe: the Lovell Telescope, the Westerbork Synthesis Radio Telescope, the Effelsberg Telescope and the Nancay Radio Telescope. These three groups also collaborate under the title of the International Pulsar Timing Array project. [86]

### Primordial

Primordial gravitational waves are gravitational waves observed in the cosmic microwave background. They were allegedly detected by the BICEP2 instrument, an announcement made on 17 March 2014, which was withdrawn on 30 January 2015 ("the signal can be entirely attributed to dust in the Milky Way" [65] ).

### LIGO and Virgo observations

On 11 February 2016, the LIGO collaboration announced the first observation of gravitational waves, from a signal detected at 09:50:45 GMT on 14 September 2015 [87] of two black holes with masses of 29 and 36 solar masses merging about 1.3 billion light-years away. During the final fraction of a second of the merger, it released more than 50 times the power of all the stars in the observable universe combined. [88] The signal increased in frequency from 35 to 250 Hz over 10 cycles (5 orbits) as it rose in strength for a period of 0.2 second. [9] The mass of the new merged black hole was 62 solar masses. Energy equivalent to three solar masses was emitted as gravitational waves. [89] The signal was seen by both LIGO detectors in Livingston and Hanford, with a time difference of 7 milliseconds due to the angle between the two detectors and the source. The signal came from the Southern Celestial Hemisphere, in the rough direction of (but much further away than) the Magellanic Clouds. [8] The confidence level of this being an observation of gravitational waves was 99.99994%. [89]

Since then LIGO and Virgo have reported more gravitational wave observations from merging black hole binaries.

On 16 October 2017, the LIGO and Virgo collaborations announced the first ever detection of gravitational waves originating from the coalescence of a binary neutron star system. The observation of the GW170817 transient, which occurred on 17 August 2017, allowed for constraining the masses of the neutron stars involved between 0.86 and 2.26 solar masses. Further analysis allowed a greater restriction of the mass values to the interval 1.17–1.60 solar masses, with the total system mass measured to be 2.73–2.78 solar masses. The inclusion of the Virgo detector in the observation effort allowed for an improvement of the localization of the source by a factor of 10. This in turn facilitated the electromagnetic follow-up of the event. In contrast to the case of binary black hole mergers, binary neutron star mergers were expected to yield an electromagnetic counterpart, that is, a light signal associated with the event. A gamma-ray burst (GRB 170817A) was detected by the Fermi Gamma-ray Space Telescope, occurring 1.7 seconds after the gravitational wave transient. The signal, originating near the galaxy NGC 4993, was associated with the neutron star merger. This was corroborated by the electromagnetic follow-up of the event (AT 2017gfo), involving 70 telescopes and observatories and yielding observations over a large region of the electromagnetic spectrum which further confirmed the neutron star nature of the merged objects and the associated kilonova. [14] [90]

## In fiction

An episode of the Russian science-fiction novel Space Apprentice by Arkady and Boris Strugatsky shows the experiment monitoring the propagation of gravitational waves at the expense of annihilating a chunk of asteroid 15 Eunomia the size of Mount Everest. [91]

In Stanislaw Lem's Fiasco , a "gravity gun" or "gracer" (gravity amplification by collimated emission of resonance) is used to reshape a collapsar, so that the protagonists can exploit the extreme relativistic effects and make an interstellar journey.

In Greg Egan's Diaspora , the analysis of a gravitational wave signal from the inspiral of a nearby binary neutron star reveals that its collision and merger is imminent, implying a large gamma-ray burst is going to impact the Earth.

In Liu Cixin's Remembrance of Earth's Past series, gravitational waves are used as an interstellar broadcast signal, which serves as a central plot point in the conflict between civilizations within the galaxy.

## Related Research Articles

The Laser Interferometer Space Antenna (LISA) is a mission led by the European Space Agency to detect and accurately measure gravitational waves—tiny ripples in the fabric of space-time—from astronomical sources. LISA would be the first dedicated space-based gravitational wave detector. It aims to measure gravitational waves directly by using laser interferometry. The LISA concept has a constellation of three spacecraft arranged in an equilateral triangle with sides 2.5 million km long, flying along an Earth-like heliocentric orbit. The distance between the satellites is precisely monitored to detect a passing gravitational wave.

Einstein@Home is a volunteer distributed computing project that searches for signals from rotating neutron stars in data from the LIGO gravitational-wave detectors, from large radio telescopes, and from the Fermi Gamma-ray Space Telescope. Neutron stars are detected by their pulsed radio and gamma-ray emission as radio and/or gamma-ray pulsars. They also might be observable as continuous gravitational wave sources if they are rapidly rotating and non-axisymmetrically deformed. Einstein@Home examines radio telescope data from the Arecibo Observatory and has in the past analyzed data from Parkes Observatory, searching for radio pulsars. The project also analyses data from the Fermi Gamma-ray Space Telescope to discover gamma-ray pulsars. The project runs on the Berkeley Open Infrastructure for Network Computing (BOINC) software platform and uses free software released under the GNU General Public License, version 2. Einstein@Home is hosted by the University of Wisconsin–Milwaukee and the Max Planck Institute for Gravitational Physics. The project is supported by the American Physical Society (APS), the US National Science Foundation (NSF), and the Max Planck Society (MPG). The Einstein@Home project director is Bruce Allen.

PSR J0737−3039 is the only known double pulsar. It consists of two neutron stars emitting electromagnetic waves in the radio wavelength in a relativistic binary system. The two pulsars are known as PSR J0737−3039A and PSR J0737−3039B. It was discovered in 2003 at Australia's Parkes Observatory by an international team led by the radio astronomer Marta Burgay during a high-latitude pulsar survey.

Tests of general relativity serve to establish observational evidence for the theory of general relativity. The first three tests, proposed by Einstein in 1915, concerned the "anomalous" precession of the perihelion of Mercury, the bending of light in gravitational fields, and the gravitational redshift. The precession of Mercury was already known; experiments showing light bending in line with the predictions of general relativity was found in 1919, with increasing precision measurements done in subsequent tests, and astrophysical measurement of the gravitational redshift was claimed to be measured in 1925, although measurements sensitive enough to actually confirm the theory were not done until 1954. A program of more accurate tests starting in 1959 tested the various predictions of general relativity with a further degree of accuracy in the weak gravitational field limit, severely limiting possible deviations from the theory.

The gravitational wave background is a random gravitational wave signal produced by a large number of weak, independent, and unresolved sources.

A binary pulsar is a pulsar with a binary companion, often a white dwarf or neutron star. Binary pulsars are one of the few objects which allow physicists to test general relativity because of the strong gravitational fields in their vicinities. Although the binary companion to the pulsar is usually difficult or impossible to observe directly, its presence can be deduced from the timing of the pulses from the pulsar itself, which can be measured with extraordinary accuracy by radio telescopes.

A gravitational-wave observatory is any device designed to measure gravitational waves, tiny distortions of spacetime that were first predicted by Einstein in 1916. Gravitational waves are perturbations in the theoretical curvature of spacetime caused by accelerated masses. The existence of gravitational radiation is a specific prediction of general relativity, but is a feature of all theories of gravity that obey special relativity. Since the 1960s, gravitational-wave detectors have been built and constantly improved. The present-day generation of resonant mass antennas and laser interferometers has reached the necessary sensitivity to detect gravitational waves from sources in the Milky Way. Gravitational-wave observatories are the primary tool of gravitational-wave astronomy.

Einstein Telescope (ET) or Einstein Observatory, is a proposed third-generation ground-based gravitational wave detector, currently under study by some institutions in the European Union. It will be able to test Einstein's general theory of relativity in strong field conditions and realize precision gravitational wave astronomy.

A neutron star merger is a type of stellar collision. It occurs in a fashion similar to the rare brand of type Ia supernovae resulting from merging white dwarfs. When two neutron stars orbit each other closely, they spiral inward as time passes due to gravitational radiation. When the two neutron stars meet, their merger leads to the formation of either a more massive neutron star, or a black hole. The merger can also create a magnetic field that is trillions of times stronger than that of Earth in a matter of one or two milliseconds. These events are believed to create short gamma-ray bursts. The mergers are also believed to produce kilonovae, which are transient sources of fairly isotropic longer wave electromagnetic radiation due to the radioactive decay of heavy r-process nuclei that are produced and ejected during the merger process.

GW151226 was a gravitational wave signal detected by the LIGO observatory on 25 December 2015 local time. On 15 June 2016, the LIGO and Virgo collaborations announced that they had verified the signal, making it the second such signal confirmed, after GW150914, which had been announced four months earlier the same year, and the third gravitational wave signal detected.

GW170104 was a gravitational wave signal detected by the LIGO observatory on 4 January 2017. On 1 June 2017, the LIGO and Virgo collaborations announced that they had reliably verified the signal, making it the third such signal announced, after GW150914 and GW151226, and fourth overall.

GW170817 was a gravitational wave (GW) signal observed by the LIGO and Virgo detectors on 17 August 2017, originating from the shell elliptical galaxy NGC 4993. The GW was produced by the last minutes of two neutron stars spiralling closer to each other and finally merging, and is the first GW observation which has been confirmed by non-gravitational means. Unlike the five previous GW detections, which were of merging black holes not expected to produce a detectable electromagnetic signal, the aftermath of this merger was also seen by 70 observatories on seven continents and in space, across the electromagnetic spectrum, marking a significant breakthrough for multi-messenger astronomy. The discovery and subsequent observations of GW170817 were given the Breakthrough of the Year award for 2017 by the journal Science.

GW170814 was a gravitational wave signal from two merging black holes, detected by the LIGO and Virgo observatories on 14 August 2017. On 27 September 2017, the LIGO and Virgo collaborations announced the observation of the signal, the fourth confirmed event after GW150914, GW151226 and GW170104. It was the first binary black hole merger detected by LIGO and Virgo together.

GW170608 was a gravitational wave event that was recorded on 8 June 2017 at 02:01:16.49 UTC by Advanced LIGO. It originated from the merger of two black holes with masses of and . The resulting black hole had a mass around 18 solar masses. About one solar mass was converted to energy in the form of gravitational waves.

PyCBC is an open source software package primarily written in the Python programming language which is designed for use in gravitational-wave astronomy and gravitational-wave data analysis. PyCBC contains modules for signal processing, FFT, matched filtering, gravitational waveform generation, among other tasks common in gravitational-wave data analysis.

## References

1. Einstein, A (June 1916). "Näherungsweise Integration der Feldgleichungen der Gravitation". Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften Berlin . part 1: 688–696. Bibcode:1916SPAW.......688E.
2. Einstein, A (1918). "Über Gravitationswellen". Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften Berlin. part 1: 154–167. Bibcode:1918SPAW.......154E.
3. Einstein, Albert; Rosen, Nathan (January 1937). "On gravitational waves". Journal of the Franklin Institute. 223 (1): 43–54. Bibcode:1937FrInJ.223...43E. doi:10.1016/S0016-0032(37)90583-0.
4. Nobel Prize Award (1993) Press Release The Royal Swedish Academy of Sciences.
5. Castelvecchi, Davide; Witze, Witze (11 February 2016). "Einstein's gravitational waves found at last". Nature News. doi:10.1038/nature.2016.19361 . Retrieved 2016-02-11.
6. Abbott BP, et al. (LIGO Scientific Collaboration and Virgo Collaboration) (2016). "Observation of Gravitational Waves from a Binary Black Hole Merger". Physical Review Letters. 116 (6): 061102. arXiv:. Bibcode:2016PhRvL.116f1102A. doi:10.1103/PhysRevLett.116.061102. PMID   26918975.
7. "Gravitational waves detected 100 years after Einstein's prediction | NSF - National Science Foundation". www.nsf.gov. Retrieved 2016-02-11.
8. LIGO Scientific Collaboration and Virgo Collaboration (2016). "GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence". Physical Review Letters. 116 (24): 241103. arXiv:. Bibcode:2016PhRvL.116x1103A. doi:10.1103/PhysRevLett.116.241103. PMID   27367379.
9. Abbott, B. P; Abbott, R; Abbott, T. D; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R. X; Adya, V. B; Affeldt, C; Afrough, M; Agarwal, B; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O. D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allen, G; Allocca, A; Altin, P. A; Amato, A; Ananyeva, A; Anderson, S. B; Anderson, W. G; Antier, S; et al. (2017). "GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2". Physical Review Letters. 118 (22): 221101. arXiv:. Bibcode:2017PhRvL.118v1101A. doi:10.1103/physrevlett.118.221101. PMID   28621973.
10. "European detector spots its first gravitational wave". 27 September 2017. Retrieved 27 September 2017.
11. Abbott BP, et al. (LIGO Scientific Collaboration & Virgo Collaboration) (16 October 2017). "GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral". Physical Review Letters. 119 (16): 161101. arXiv:. Bibcode:2017PhRvL.119p1101A. doi:10.1103/PhysRevLett.119.161101. PMID   29099225.
12. "The Newest Search for Gravitational Waves has Begun". LIGO Caltech. LIGO. 18 September 2015. Retrieved 29 November 2015.
13. Rincon, Paul; Amos, Jonathan (3 October 2017). "Einstein's waves win Nobel Prize". BBC News . Retrieved 3 October 2017.
14. Overbye, Dennis (3 October 2017). "2017 Nobel Prize in Physics Awarded to LIGO Black Hole Researchers". The New York Times . Retrieved 3 October 2017.
15. Kaiser, David (3 October 2017). "Learning from Gravitational Waves". The New York Times . Retrieved 3 October 2017.
16. "First Second of the Big Bang". How The Universe Works 3 . 2014. Discovery Science.
17. Bernard Schutz (14 May 2009). A First Course in General Relativity. Cambridge University Press. ISBN   978-0-521-88705-2.
18. LIGO Scientific Collaboration; Virgo Collaboration (2012). "Search for Gravitational Waves from Low Mass Compact Binary Coalescence in LIGO's Sixth Science Run and Virgo's Science Runs 2 and 3". Physical Review D. 85 (8): 082002. arXiv:. Bibcode:2012PhRvD..85h2002A. doi:10.1103/PhysRevD.85.082002.
19. Krauss, LM; Dodelson, S; Meyer, S (2010). "Primordial Gravitational Waves and Cosmology". Science. 328 (5981): 989–992. arXiv:. Bibcode:2010Sci...328..989K. doi:10.1126/science.1179541. PMID   20489015.
20. Hawking, S. W.; Israel, W. (1979). General Relativity: An Einstein Centenary Survey. Cambridge: Cambridge University Press. p. 98. ISBN   978-0-521-22285-3.
21. Staff (17 March 2014). "BICEP2 2014 Results Release". National Science Foundation . Retrieved 18 March 2014.
22. Clavin, Whitney (17 March 2014). "NASA Technology Views Birth of the Universe". NASA . Retrieved 17 March 2014.
23. Overbye, Dennis (17 March 2014). "Detection of Waves in Space Buttresses Landmark Theory of Big Bang". New York Times . Retrieved 17 March 2014.
24. Heaviside O. A gravitational and electromagnetic analogy,Electromagnetic Theory, 1893, vol.1 455–466 Appendix B
25. (PDF) Membres de l'Académie des sciences depuis sa création : Henri Poincare. Sur la dynamique de l' electron. Note de H. Poincaré. C.R. T.140 (1905) 1504–1508.
26. "page 1507" (PDF).
27. Cervantes-Cota, J.L.; Galindo-Uribarri, S.; Smoot, G.F. (2016). "A Brief History of Gravitational Waves". Universe. 2 (3): 22. arXiv:. Bibcode:2016Univ....2...22C. doi:10.3390/universe2030022.
28. Daniel Kennefick (29 March 2016). Traveling at the Speed of Thought: Einstein and the Quest for Gravitational Waves. Princeton University Press. ISBN   978-1-4008-8274-8.
29. Taylor, J. H.; Fowler, L. A.; McCulloch, P. M. (1979). "Overall measurements of relativistic effects in the binary pulsar PSR 1913 + 16". Nature. 277: 437–440. Bibcode:1982ApJ...253..908T. doi:10.1086/159690.
30. Taylor, J.; Weisberg, J.M. (1979). "A New Test of General Relativity: Gravitational Radiation and the Binary Pulsar PSR 1913+16". Astrophysical Journal. 253 (5696): 908–920. Bibcode:1979Natur.277..437T. doi:10.1038/277437a0.
31. Gertsenshtein, M. E.; Pustovoit, V. I. (1962). "On the detection of low frequency gravitational waves". JETP. 43: 605–607.
32. Cho, Adrian (Oct. 3, 2017). "Ripples in space: U.S. trio wins physics Nobel for discovery of gravitational waves," Science. Retrieved 20 May 2019.
33. Cervantes-Cota, Jorge L., Galindo-Uribarri, Salvador, and Smoot, George F. (2016). "A Brief History of Gravitational Waves," Universe, 2, no. 3, 22. Retrieved 20 May 2019.
34. Clara Moskowitz (17 March 2014). "Gravity Waves from Big Bang Detected". Scientific American. Retrieved 21 March 2016.
35. Ian Sample (2014-06-04). "Gravitational waves turn to dust after claims of flawed analysis". the Guardian.
36. LIGO press conference 11 February 2016
37. Landau, L. D.; Lifshitz, E. M. (1975). The Classical Theory of Fields (Fourth Revised English ed.). Pergamon Press. pp. 356–357. ISBN   978-0-08-025072-4.
38. "Gravitational Astrophysics Laboratory". science.gsfc/nasa.gov. Retrieved 20 September 2016.
39. Peters, P.; Mathews, J. (1963). "Gravitational Radiation from Point Masses in a Keplerian Orbit". Physical Review. 131 (1): 435–440. Bibcode:1963PhRv..131..435P. doi:10.1103/PhysRev.131.435.
40. Peters, P. (1964). "Gravitational Radiation and the Motion of Two Point Masses" (PDF). Physical Review. 136 (4B): B1224–B1232. Bibcode:1964PhRv..136.1224P. doi:10.1103/PhysRev.136.B1224.
41. "Wayback Machine" (PDF). 29 January 2016.
42. "ESO Telescopes Observe First Light from Gravitational Wave Source - Merging neutron stars scatter gold and platinum into space". www.eso.org. Retrieved 18 October 2017.
43. Pretorius, Frans (2005). "Evolution of Binary Black-Hole Spacetimes". Physical Review Letters. 95 (12): 121101. arXiv:. Bibcode:2005PhRvL..95l1101P. doi:10.1103/PhysRevLett.95.121101. ISSN   0031-9007. PMID   16197061.
44. Campanelli, M.; Lousto, C. O.; Marronetti, P.; Zlochower, Y. (2006). "Accurate Evolutions of Orbiting Black-Hole Binaries without Excision". Physical Review Letters. 96 (11): 111101. arXiv:. Bibcode:2006PhRvL..96k1101C. doi:10.1103/PhysRevLett.96.111101. ISSN   0031-9007. PMID   16605808.
45. Baker, John G.; Centrella, Joan; Choi, Dae-Il; Koppitz, Michael; van Meter, James (2006). "Gravitational-Wave Extraction from an Inspiraling Configuration of Merging Black Holes". Physical Review Letters. 96 (11): 111102. arXiv:. Bibcode:2006PhRvL..96k1102B. doi:10.1103/PhysRevLett.96.111102. ISSN   0031-9007. PMID   16605809.
46. "Neutron Star Crust Is Stronger than Steel" . Retrieved 2016-07-01.
47. Merritt, D.; et al. (May 2004). "Consequences of Gravitational Wave Recoil". The Astrophysical Journal Letters. 607 (1): L9–L12. arXiv:. Bibcode:2004ApJ...607L...9M. doi:10.1086/421551.
48. Gualandris A, Merritt D, et al. (May 2008). "Ejection of Supermassive Black Holes from Galaxy Cores". The Astrophysical Journal. 678 (2): 780–797. arXiv:. Bibcode:2008ApJ...678..780G. doi:10.1086/586877.
49. Merritt, D.; Schnittman, J. D.; Komossa, S. (2009). "Hypercompact Stellar Systems Around Recoiling Supermassive Black Holes". The Astrophysical Journal. 699 (2): 1690–1710. arXiv:. Bibcode:2009ApJ...699.1690M. doi:10.1088/0004-637X/699/2/1690.
50. Komossa, S.; Zhou, H.; Lu, H. (May 2008). "A Recoiling Supermassive Black Hole in the Quasar SDSS J092712.65+294344.0?". The Astrophysical Journal. 678 (2): L81–L84. arXiv:. Bibcode:2008ApJ...678L..81K. doi:10.1086/588656.
51. For a comparison of the geometric derivation and the (non-geometric) spin-2 field derivation of general relativity, refer to box 18.1 (and also 17.2.5) of Misner, C. W.; Thorne, K. S.; Wheeler, J. A. (1973). Gravitation. W. H. Freeman. ISBN   978-0-7167-0344-0.
52. Lightman, A. P.; Press, W. H.; Price, R. H.; Teukolsky, S. A. (1975). "Problem 12.16". Problem book in Relativity and Gravitation. Princeton University Press. ISBN   978-0-691-08162-5.
53. Update on Gravitational Wave Science from the LIGO-Virgo Scientific Collaborations (Video of the press conference), retrieved 27 September 2017
54. Berry, Christopher (14 May 2015). "Listening to the gravitational universe: what can't we see?". University of Birmingham. University of Birmingham . Retrieved 29 November 2015.
55. Mack, Katie (2017-06-12). "Black Holes, Cosmic Collisions and the Rippling of Spacetime". The Atlantic.
56. Grishchuk, L. P. (1976). "Primordial Gravitons and the Possibility of Their Observation". Sov. Phys. JETP Lett. 23 (6): 293–296. Bibcode:1976ZhPmR..23..326G. PACS numbers: 04.30. + x, 04.90. + e
57. Braginsky, V. B., Rudenko and Valentin, N. Section 7: "Generation of gravitational waves in the laboratory", Physics Report (Review section of Physics Letters), 46, No. 5. 165–200, (1978).
58. Li, Fangyu, Baker, R. M L, Jr., and Woods, R. C., "Piezoelectric-Crystal-Resonator High-Frequency Gravitational Wave Generation and Synchro-Resonance Detection", in the proceedings of Space Technology and Applications International Forum (STAIF-2006), edited by M.S. El-Genk, AIP Conference Proceedings, Melville NY 813: 2006.
59. Wall, SPACE.com, Mike. "Gravitational Waves Send Supermassive Black Hole Flying". Scientific American. Retrieved 2017-03-27.
60. Chiaberge, M.; Ely, J. C.; Meyer, E. T.; Georganopoulos, M.; Marinucci, A.; Bianchi, S.; Tremblay, G. R.; Hilbert, B.; Kotyla, J. P. (2016-11-16). "The puzzling case of the radio-loud QSO 3C 186: a gravitational wave recoiling black hole in a young radio source?". Astronomy & Astrophysics. 600: A57. arXiv:. Bibcode:2017A&A...600A..57C. doi:10.1051/0004-6361/201629522.
61. Cowen, Ron (2015-01-30). "Gravitational waves discovery now officially dead". nature. doi:10.1038/nature.2015.16830.
62. The LIGO Scientific Collaboration; the Virgo Collaboration (2004). "Relativistic Binary Pulsar B1913+16: Thirty Years of Observations and Analysis". Binary Radio Pulsars. 328: 25. arXiv:. Bibcode:2005ASPC..328...25W.
63. Taylor, J. H.; Weisberg, J. M. (1979). "A New Test of General Relativity: Gravitational Radiation and the Binary Pulsar PSR 1913+16". Astrophysical Journal. 253 (5696): 908–920. Bibcode:1979Natur.277..437T. doi:10.1038/277437a0.
64. Huang, Y.; Weisberg, J. M. (2016). "Relativistic Measurements from Timing the Binary Pulsar PSR B1913+16". Astrophysical Journal. 829 (1): 55. arXiv:. Bibcode:2016ApJ...829...55W. doi:10.3847/0004-637X/829/1/55.
65. "Nobel Prizes and Laureates - NobelPrize.org". NobelPrize.org.
66. Damour, Thibault (2015). "1974: the discovery of the first binary pulsar". Classical and Quantum Gravity. 32 (12): 124009. arXiv:. Bibcode:2015CQGra..32l4009D. doi:10.1088/0264-9381/32/12/124009.
67. Binary and Millisecond Pulsars Archived 2012-03-01 at the Wayback Machine
68. "Noise and Sensitivity". gwoptics: Gravitational wave E-book. University of Birmingham . Retrieved 10 December 2015.
69. Thorne, Kip S. (1995). "Gravitational Waves". Particle and Nuclear Astrophysics and Cosmology in the Next Millenium: 160. arXiv:. Bibcode:1995pnac.conf..160T.
70. Blair DG, ed. (1991). The detection of gravitational waves. Cambridge University Press.
71. For a review of early experiments using Weber bars, see Levine, J. (April 2004). "Early Gravity-Wave Detection Experiments, 1960–1975". Physics in Perspective. 6 (1): 42–75. Bibcode:2004PhP.....6...42L. doi:10.1007/s00016-003-0179-6.
72. De Waard, A.; Gottardi, L.; Frossati, G. (2006). "MiniGRAIL, the first spherical gravitational wave detector". Recent Developments in Gravitational Physics: 415. Bibcode:2006rdgp.conf..415D.
73. de Waard, Arlette; Luciano Gottardi; Giorgio Frossati (July 2000). Spherical Gravitational Wave Detectors: cooling and quality factor of a small CuAl6% sphere. Marcel Grossmann meeting on General Relativity. Rome, Italy: World Scientific Publishing Co. Pte. Ltd. (published December 2002). pp. 1899–1901. Bibcode:2002nmgm.meet.1899D. doi:10.1142/9789812777386_0420. ISBN   9789812777386.
74. Cruise, Mike. "Research Interests". Astrophysics & Space Research Group. University of Birmingham . Retrieved 29 November 2015.
75. High Frequency Relic Gravitational Waves Archived 2016-02-16 at the Wayback Machine . page 12
76. The idea of using laser interferometry for gravitational wave detection was first mentioned by Gerstenstein and Pustovoit 1963 Sov. Phys.–JETP 16 433. Weber mentioned it in an unpublished laboratory notebook. Rainer Weiss first described in detail a practical solution with an analysis of realistic limitations to the technique in R. Weiss (1972). "Electromagetically Coupled Broadband Gravitational Antenna". Quarterly Progress Report, Research Laboratory of Electronics, MIT 105: 54.
77. LIGO Scientific Collaboration; Virgo Collaboration (2010). "Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors". Classical and Quantum Gravity. 27 (17): 17300. arXiv:. Bibcode:2010CQGra..27q3001A. doi:10.1088/0264-9381/27/17/173001.
78. Hellings, R.W.; Downs, G.S. (1983). "Upper limits on the isotropic gravitational radiation background from pulsar timing analysis". Astrophysical Journal Letters . 265: L39–L42. Bibcode:1983ApJ...265L..39H. doi:10.1086/183954.
79. Arzoumanian Z, et al. (NANOGrav Collaboration) (2018). "The NANOGrav 11-year Data Set: Pulsar-timing Constraints On The Stochastic Gravitational-wave Background". The Astrophysical Journal. 859 (1): 47. arXiv:. Bibcode:2018ApJ...859...47A. doi:10.3847/1538-4357/aabd3b.
80. Hobbs, G.; et al. (2010). "The International Pulsar Timing Array project: using pulsars as a gravitational wave detector". Classical and Quantum Gravity . 27 (8): 084013. arXiv:. Bibcode:2010CQGra..27h4013H. doi:10.1088/0264-9381/27/8/084013.
81. "Gravitational waves from black holes detected". BBC News. 11 February 2016.
82. "GW170817 Press Release". LIGO Lab | Caltech. Retrieved 2017-10-17.
83. ME Gerstenstein; VI Pustovoit (1962). "On the Detection of Low-Frequency Gravitational Waves". ZhETF (in Russian). 16 (8): 605–607. Bibcode:1963JETP...16..433G.