General relativity |
---|
In the theory of general relativity, linearized gravity is the application of perturbation theory to the metric tensor that describes the geometry of spacetime. As a consequence, linearized gravity is an effective method for modeling the effects of gravity when the gravitational field is weak. The usage of linearized gravity is integral to the study of gravitational waves and weak-field gravitational lensing.
The Einstein field equation (EFE) describing the geometry of spacetime is given as
where is the Ricci tensor, is the Ricci scalar, is the energy–momentum tensor, is the Einstein gravitational constant, and is the spacetime metric tensor that represents the solutions of the equation.
Although succinct when written out using Einstein notation, hidden within the Ricci tensor and Ricci scalar are exceptionally nonlinear dependencies on the metric tensor that render the prospect of finding exact solutions impractical in most systems. However, when describing systems for which the curvature of spacetime is small (meaning that terms in the EFE that are quadratic in do not significantly contribute to the equations of motion), one can model the solution of the field equations as being the Minkowski metric [note 1] plus a small perturbation term . In other words:
In this regime, substituting the general metric for this perturbative approximation results in a simplified expression for the Ricci tensor:
where is the trace of the perturbation, denotes the partial derivative with respect to the coordinate of spacetime, and is the d'Alembert operator.
Together with the Ricci scalar,
the left side of the field equation reduces to
and thus the EFE is reduced to a linear second order partial differential equation in terms of .
The process of decomposing the general spacetime into the Minkowski metric plus a perturbation term is not unique. This is due to that different choices for coordinates may give different forms for . In order to capture this phenomenon, the application of gauge symmetry is introduced.
Gauge symmetries are a mathematical device for describing a system that does not change when the underlying coordinate system is "shifted" by an infinitesimal amount. So although the perturbation metric is not consistently defined between different coordinate systems, the overall system which it describes is.
To capture this formally, the non-uniqueness of the perturbation is represented as being a consequence of the diverse collection of diffeomorphisms on spacetime that leave sufficiently small. Therefore, it is required that be defined in terms of a general set of diffeomorphisms, then select the subset of these that preserve the small scale that is required by the weak-field approximation. One may thus define to denote an arbitrary diffeomorphism that maps the flat Minkowski spacetime to the more general spacetime represented by the metric . With this, the perturbation metric may be defined as the difference between the pullback of and the Minkowski metric:
The diffeomorphisms may thus be chosen such that .
Given then a vector field defined on the flat background spacetime, an additional family of diffeomorphisms may be defined as those generated by and parameterized by . These new diffeomorphisms will be used to represent the coordinate transformations for "infinitesimal shifts" as discussed above. Together with , a family of perturbations is given by
Therefore, in the limit ,
where is the Lie derivative along the vector field .
The Lie derivative works out to yield the final gauge transformation of the perturbation metric :
which precisely define the set of perturbation metrics that describe the same physical system. In other words, it characterizes the gauge symmetry of the linearized field equations.
By exploiting gauge invariance, certain properties of the perturbation metric can be guaranteed by choosing a suitable vector field .
To study how the perturbation distorts measurements of length, it is useful to define the following spatial tensor:
(Note that the indices span only spatial components: ). Thus, by using , the spatial components of the perturbation can be decomposed as
where .
The tensor is, by construction, traceless and is referred to as the strain since it represents the amount by which the perturbation stretches and contracts measurements of space. In the context of studying gravitational radiation, the strain is particularly useful when utilized with the transverse gauge. This gauge is defined by choosing the spatial components of to satisfy the relation
then choosing the time component to satisfy
After performing the gauge transformation using the formula in the previous section, the strain becomes spatially transverse:
with the additional property:
The synchronous gauge simplifies the perturbation metric by requiring that the metric not distort measurements of time. More precisely, the synchronous gauge is chosen such that the non-spatial components of are zero, namely
This can be achieved by requiring the time component of to satisfy
and requiring the spatial components to satisfy
The harmonic gauge (also referred to as the Lorenz gauge [note 2] ) is selected whenever it is necessary to reduce the linearized field equations as much as possible. This can be done if the condition
is true. To achieve this, is required to satisfy the relation
Consequently, by using the harmonic gauge, the Einstein tensor reduces to
Therefore, by writing it in terms of a "trace-reversed" metric, , the linearized field equations reduce to
This can be solved exactly, to produce the wave solutions that define gravitational radiation.
The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields. This density and flux of energy and momentum are the sources of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity.
The Klein–Gordon equation is a relativistic wave equation, related to the Schrödinger equation. It is second-order in space and time and manifestly Lorentz-covariant. It is a differential equation version of the relativistic energy–momentum relation .
Teleparallelism, was an attempt by Albert Einstein to base a unified theory of electromagnetism and gravity on the mathematical structure of distant parallelism, also referred to as absolute or teleparallelism. In this theory, a spacetime is characterized by a curvature-free linear connection in conjunction with a metric tensor field, both defined in terms of a dynamical tetrad field.
In differential geometry, the Einstein tensor is used to express the curvature of a pseudo-Riemannian manifold. In general relativity, it occurs in the Einstein field equations for gravitation that describe spacetime curvature in a manner that is consistent with conservation of energy and momentum.
In differential geometry, the four-gradient is the four-vector analogue of the gradient from vector calculus.
In electromagnetism, the electromagnetic tensor or electromagnetic field tensor is a mathematical object that describes the electromagnetic field in spacetime. The field tensor was first used after the four-dimensional tensor formulation of special relativity was introduced by Hermann Minkowski. The tensor allows related physical laws to be written concisely, and allows for the quantization of the electromagnetic field by the Lagrangian formulation described below.
In physics, precisely in the study of the theory of general relativity and many alternatives to it, the post-Newtonian formalism is a calculational tool that expresses Einstein's (nonlinear) equations of gravity in terms of the lowest-order deviations from Newton's law of universal gravitation. This allows approximations to Einstein's equations to be made in the case of weak fields. Higher-order terms can be added to increase accuracy, but for strong fields, it may be preferable to solve the complete equations numerically. Some of these post-Newtonian approximations are expansions in a small parameter, which is the ratio of the velocity of the matter forming the gravitational field to the speed of light, which in this case is better called the speed of gravity. In the limit, when the fundamental speed of gravity becomes infinite, the post-Newtonian expansion reduces to Newton's law of gravity.
In differential geometry and mathematical physics, a spin connection is a connection on a spinor bundle. It is induced, in a canonical manner, from the affine connection. It can also be regarded as the gauge field generated by local Lorentz transformations. In some canonical formulations of general relativity, a spin connection is defined on spatial slices and can also be regarded as the gauge field generated by local rotations.
In theoretical physics, massive gravity is a theory of gravity that modifies general relativity by endowing the graviton with a nonzero mass. In the classical theory, this means that gravitational waves obey a massive wave equation and hence travel at speeds below the speed of light.
In theoretical physics, a source field is a background field coupled to the original field as
In general relativity, post-Newtonian expansions are used for finding an approximate solution of Einstein field equations for the metric tensor. The approximations are expanded in small parameters that express orders of deviations from Newton's law of universal gravitation. This allows approximations to Einstein's equations to be made in the case of weak fields. Higher-order terms can be added to increase accuracy, but for strong fields sometimes it is preferable to solve the complete equations numerically. This method is a common mark of effective field theories. In the limit, when the small parameters are equal to 0, the post-Newtonian expansion reduces to Newton's law of gravity.
In relativistic physics, the electromagnetic stress–energy tensor is the contribution to the stress–energy tensor due to the electromagnetic field. The stress–energy tensor describes the flow of energy and momentum in spacetime. The electromagnetic stress–energy tensor contains the negative of the classical Maxwell stress tensor that governs the electromagnetic interactions.
In physics, Maxwell's equations in curved spacetime govern the dynamics of the electromagnetic field in curved spacetime or where one uses an arbitrary coordinate system. These equations can be viewed as a generalization of the vacuum Maxwell's equations which are normally formulated in the local coordinates of flat spacetime. But because general relativity dictates that the presence of electromagnetic fields induce curvature in spacetime, Maxwell's equations in flat spacetime should be viewed as a convenient approximation.
Alternatives to general relativity are physical theories that attempt to describe the phenomenon of gravitation in competition with Einstein's theory of general relativity. There have been many different attempts at constructing an ideal theory of gravity.
The optical metric was defined by German theoretical physicist Walter Gordon in 1923 to study the geometrical optics in curved space-time filled with moving dielectric materials.
In mathematical physics, the Dirac equation in curved spacetime is a generalization of the Dirac equation from flat spacetime to curved spacetime, a general Lorentzian manifold.
Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.
In theoretical physics, the dual graviton is a hypothetical elementary particle that is a dual of the graviton under electric-magnetic duality, as an S-duality, predicted by some formulations of eleven-dimensional supergravity.
In supersymmetry, 4D global supersymmetry is the theory of global supersymmetry in four dimensions with a single supercharge. It consists of an arbitrary number of chiral and vector supermultiplets whose possible interactions are strongly constrained by supersymmetry, with the theory primarily fixed by three functions: the Kähler potential, the superpotential, and the gauge kinetic matrix. Many common models of supersymmetry are special cases of this general theory, such as the Wess–Zumino model, super Yang–Mills theory, and the Minimal Supersymmetric Standard Model. When gravity is included, the result is described by 4D supergravity.
In supersymmetry, 4D supergravity is the theory of supergravity in four dimensions with a single supercharge. It contains exactly one supergravity multiplet, consisting of a graviton and a gravitino, but can also have an arbitrary number of chiral and vector supermultiplets, with supersymmetry imposing stringent constraints on how these can interact. The theory is primarily determined by three functions, those being the Kähler potential, the superpotential, and the gauge kinetic matrix. Many of its properties are strongly linked to the geometry associated to the scalar fields in the chiral multiplets. After the simplest form of this supergravity was first discovered, a theory involving only the supergravity multiplet, the following years saw an effort to incorporate different matter multiplets, with the general action being derived in 1982 by Eugène Cremmer, Sergio Ferrara, Luciano Girardello, and Antonie Van Proeyen.